199 research outputs found

    Data Service Outsourcing and Privacy Protection in Mobile Internet

    Get PDF
    Mobile Internet data have the characteristics of large scale, variety of patterns, and complex association. On the one hand, it needs efficient data processing model to provide support for data services, and on the other hand, it needs certain computing resources to provide data security services. Due to the limited resources of mobile terminals, it is impossible to complete large-scale data computation and storage. However, outsourcing to third parties may cause some risks in user privacy protection. This monography focuses on key technologies of data service outsourcing and privacy protection, including the existing methods of data analysis and processing, the fine-grained data access control through effective user privacy protection mechanism, and the data sharing in the mobile Internet

    Privacy-preserving efficient searchable encryption

    Get PDF
    Data storage and computation outsourcing to third-party managed data centers, in environments such as Cloud Computing, is increasingly being adopted by individuals, organizations, and governments. However, as cloud-based outsourcing models expand to society-critical data and services, the lack of effective and independent control over security and privacy conditions in such settings presents significant challenges. An interesting solution to these issues is to perform computations on encrypted data, directly in the outsourcing servers. Such an approach benefits from not requiring major data transfers and decryptions, increasing performance and scalability of operations. Searching operations, an important application case when cloud-backed repositories increase in number and size, are good examples where security, efficiency, and precision are relevant requisites. Yet existing proposals for searching encrypted data are still limited from multiple perspectives, including usability, query expressiveness, and client-side performance and scalability. This thesis focuses on the design and evaluation of mechanisms for searching encrypted data with improved efficiency, scalability, and usability. There are two particular concerns addressed in the thesis: on one hand, the thesis aims at supporting multiple media formats, especially text, images, and multimodal data (i.e. data with multiple media formats simultaneously); on the other hand the thesis addresses client-side overhead, and how it can be minimized in order to support client applications executing in both high-performance desktop devices and resource-constrained mobile devices. From the research performed to address these issues, three core contributions were developed and are presented in the thesis: (i) CloudCryptoSearch, a middleware system for storing and searching text documents with privacy guarantees, while supporting multiple modes of deployment (user device, local proxy, or computational cloud) and exploring different tradeoffs between security, usability, and performance; (ii) a novel framework for efficiently searching encrypted images based on IES-CBIR, an Image Encryption Scheme with Content-Based Image Retrieval properties that we also propose and evaluate; (iii) MIE, a Multimodal Indexable Encryption distributed middleware that allows storing, sharing, and searching encrypted multimodal data while minimizing client-side overhead and supporting both desktop and mobile devices

    Depth optimized efficient homomorphic sorting

    Get PDF
    We introduce a sorting scheme which is capable of efficiently sorting encrypted data without the secret key. The technique is obtained by focusing on the multiplicative depth of the sorting circuit alongside the more traditional metrics such as number of comparisons and number of iterations. The reduced depth allows much reduced noise growth and thereby makes it possible to select smaller parameter sizes in somewhat homomorphic encryption instantiations resulting in greater efficiency savings. We first consider a number of well known comparison based sorting algorithms as well as some sorting networks, and analyze their circuit implementations with respect to multiplicative depth. In what follows, we introduce a new ranking based sorting scheme and rigorously analyze the multiplicative depth complexity as O(log(N) + log(l)), where N is the size of the array to be sorted and l is the bit size of the array elements. Finally, we simulate our sorting scheme using a leveled/batched instantiation of a SWHE library. Our sorting scheme performs favorably over the analyzed classical sorting algorithms

    Data Sharing and Access Using Aggregate Key Concept

    Get PDF
    Cloud Storage is a capacity of information online in the cloud, which is available from different and associated assets. Distributed storage can provide high availability and consistent quality, reliable assurance, debacle free restoration, and reduced expense. Distributed storage has imperative usefulness, i.e., safely, proficiently, adaptably offering information to others. Data privacy is essential in the cloud to ensure that the user’s identity is not leaked to unauthorized persons. Using the cloud, anyone can share and store the data, as much as they want. To share the data in a secure way, cryptography is very useful. By using different encryption techniques, a user can store data in the cloud. Encryption and decryption keys are created for unique data that the user provides. Only a particular set of decryption keys are shared so that the data can be decrypted. A public–key encryption system which is called a Key-Aggregate cryptosystem (KAC) is presented. This system produces constant size ciphertexts. Any arrangement of secret keys can be aggregated and make them into a single key, which has the same power of the keys that are being used. This total key can then be sent to the others for decoding of a ciphertext set and remaining encoded documents outside the set stays private. The project presented in this paper is an implementation of the proposed system

    Intelligent Computing for Big Data

    Get PDF
    Recent advances in artificial intelligence have the potential to further develop current big data research. The Special Issue on ‘Intelligent Computing for Big Data’ highlighted a number of recent studies related to the use of intelligent computing techniques in the processing of big data for text mining, autism diagnosis, behaviour recognition, and blockchain-based storage
    • …
    corecore