995 research outputs found

    Estimation-Based Queue Scheduling Model to Improve QoS for End Users in MANETs

    Get PDF
    Using MANETs for real time applications is always a challenge as the network is extremely dynamic with brisk topology changes. Despite this, several real time schedulers have been developed that aimed at providing QoS to ad hoc nodes. The quality of service (QoS) is standardized in terms of capacity, reliability, link quality, delays/jitters, and network cost. Thus, for QoS, the better transmission should be maintained at end user as well as at the transmitting unit. QoS of a network is affected by delays and bandwidth allocated for transmission. For an efficient network, it is required to predict these metrics during transmission. For this, in this paper, integration of quaternion-based Kalman filter is performed that predicts the required bandwidth and the network delays with higher accuracy. From the analysis, it is shown that bandwidth can be optimized but it is not possible to aloof delays in the network. Thus, while implementing such admission control procedures, estimation process allows control over delays and sustain them from going beyond a certain threshold value. The model proposed is a novel approach and has not been formulated in any of previous work related to QoS in MANETs. The effectiveness of model is demonstrated using both simulation and real time results

    Quality of service differentiation for multimedia delivery in wireless LANs

    Get PDF
    Delivering multimedia content to heterogeneous devices over a variable networking environment while maintaining high quality levels involves many technical challenges. The research reported in this thesis presents a solution for Quality of Service (QoS)-based service differentiation when delivering multimedia content over the wireless LANs. This thesis has three major contributions outlined below: 1. A Model-based Bandwidth Estimation algorithm (MBE), which estimates the available bandwidth based on novel TCP and UDP throughput models over IEEE 802.11 WLANs. MBE has been modelled, implemented, and tested through simulations and real life testing. In comparison with other bandwidth estimation techniques, MBE shows better performance in terms of error rate, overhead, and loss. 2. An intelligent Prioritized Adaptive Scheme (iPAS), which provides QoS service differentiation for multimedia delivery in wireless networks. iPAS assigns dynamic priorities to various streams and determines their bandwidth share by employing a probabilistic approach-which makes use of stereotypes. The total bandwidth to be allocated is estimated using MBE. The priority level of individual stream is variable and dependent on stream-related characteristics and delivery QoS parameters. iPAS can be deployed seamlessly over the original IEEE 802.11 protocols and can be included in the IEEE 802.21 framework in order to optimize the control signal communication. iPAS has been modelled, implemented, and evaluated via simulations. The results demonstrate that iPAS achieves better performance than the equal channel access mechanism over IEEE 802.11 DCF and a service differentiation scheme on top of IEEE 802.11e EDCA, in terms of fairness, throughput, delay, loss, and estimated PSNR. Additionally, both objective and subjective video quality assessment have been performed using a prototype system. 3. A QoS-based Downlink/Uplink Fairness Scheme, which uses the stereotypes-based structure to balance the QoS parameters (i.e. throughput, delay, and loss) between downlink and uplink VoIP traffic. The proposed scheme has been modelled and tested through simulations. The results show that, in comparison with other downlink/uplink fairness-oriented solutions, the proposed scheme performs better in terms of VoIP capacity and fairness level between downlink and uplink traffic

    Weighted Max-Min Resource Allocation for Frequency Selective Channels

    Full text link
    In this paper, we discuss the computation of weighted max-min rate allocation using joint TDM/FDM strategies under a PSD mask constraint. We show that the weighted max-min solution allocates the rates according to a predetermined rate ratio defined by the weights, a fact that is very valuable for telecommunication service providers. Furthermore, we show that the problem can be efficiently solved using linear programming. We also discuss the resource allocation problem in the mixed services scenario where certain users have a required rate, while the others have flexible rate requirements. The solution is relevant to many communication systems that are limited by a power spectral density mask constraint such as WiMax, Wi-Fi and UWB

    A Dynamic Multimedia User-Weight Classification Scheme for IEEE_802.11 WLANs

    Full text link
    In this paper we expose a dynamic traffic-classification scheme to support multimedia applications such as voice and broadband video transmissions over IEEE 802.11 Wireless Local Area Networks (WLANs). Obviously, over a Wi-Fi link and to better serve these applications - which normally have strict bounded transmission delay or minimum link rate requirement - a service differentiation technique can be applied to the media traffic transmitted by the same mobile node using the well-known 802.11e Enhanced Distributed Channel Access (EDCA) protocol. However, the given EDCA mode does not offer user differentiation, which can be viewed as a deficiency in multi-access wireless networks. Accordingly, we propose a new inter-node priority access scheme for IEEE 802.11e networks which is compatible with the EDCA scheme. The proposed scheme joins a dynamic user-weight to each mobile station depending on its outgoing data, and therefore deploys inter-node priority for the channel access to complement the existing EDCA inter-frame priority. This provides efficient quality of service control across multiple users within the same coverage area of an access point. We provide performance evaluations to compare the proposed access model with the basic EDCA 802.11 MAC protocol mode to elucidate the quality improvement achieved for multimedia communication over 802.11 WLANs.Comment: 15 pages, 8 figures, 3 tables, International Journal of Computer Networks & Communications (IJCNC

    Wireless measurement Scheme for bandwidth Estimation in Multihop Wireless Adhoc network

    Get PDF
    The necessity to bear real time and multimedia application for users of Mobile 1D468;1D485;1D489;1D490;1D484; Network (1D474;1D468;1D475;1D46C;1D47B;) is becoming vital. Mobile 1D468;1D485;1D489;1D490;1D484; network facilitates decentralized network that can present multimedia users with mobility that they have demanded, if proficient 1D478;1D490;1D47A; multicast strategies were developed. By giving the guarantee of 1D478;1D490;1D47A; in 1D468;1D485;1D489;1D490;1D484; network, the proficient bandwidth estimation method plays a very important role. The research paper represented here presents a splendid method for estimating or measuring Bandwidth in 1D468;1D485;1D489;1D490;1D484; network whose character is decentralized in nature. Contrasting in the centralized formation, the bandwidth estimating in 1D468;1D485;1D489;1D490;1D484; is significant and this eventually makes an influence over the 1D478;1D490;1D47A; of the network communication. The admission control and dynamic bandwidth management method which is presented here, facilitates it with fairness and rate guarantees despite the distributed link layer fair scheduling being absent. Alteration has been made over 1D474;1D468;1D46A; layer and this method is appropriate where the peer-to-peer (1D477;1D7D0;1D477;) multimedia transmissions rates are amended in compliantly fashion.In the research work presented here the architecture of the 1D474;1D468;1D46A; layer has been altered and the data handling capacity has been increased. This technique is adopted to facilitate higher data rate transmission and eliminate congestion over the considerednetwork. The proposed technique implements the splitting of 1D474;1D468;1D46A; into two sub layer where one will be responsible for control data transmission while other effectively transmits the data bits. Thus it results into higher data rate transmission with better accuracy and optimized network throughput. The research work in the presented paper exhibits superior accuracy and is very much effective in bandwidth estimation and management application in multi hop Mobile Ad-H

    Real-Time QoS Routing Protocols in Wireless Multimedia Sensor Networks: Study and Analysis

    Get PDF
    Many routing protocols have been proposed for wireless sensor networks. These routing protocols are almost always based on energy efficiency. However, recent advances in complementary metal-oxide semiconductor (CMOS) cameras and small microphones have led to the development of Wireless Multimedia Sensor Networks (WMSN) as a class of wireless sensor networks which pose additional challenges. The transmission of imaging and video data needs routing protocols with both energy efficiency and Quality of Service (QoS) characteristics in order to guarantee the efficient use of the sensor nodes and effective access to the collected data. Also, with integration of real time applications in Wireless Senor Networks (WSNs), the use of QoS routing protocols is not only becoming a significant topic, but is also gaining the attention of researchers. In designing an efficient QoS routing protocol, the reliability and guarantee of end-to-end delay are critical events while conserving energy. Thus, considerable research has been focused on designing energy efficient and robust QoS routing protocols. In this paper, we present a state of the art research work based on real-time QoS routing protocols for WMSNs that have already been proposed. This paper categorizes the real-time QoS routing protocols into probabilistic and deterministic protocols. In addition, both categories are classified into soft and hard real time protocols by highlighting the QoS issues including the limitations and features of each protocol. Furthermore, we have compared the performance of mobility-aware query based real-time QoS routing protocols from each category using Network Simulator-2 (NS2). This paper also focuses on the design challenges and future research directions as well as highlights the characteristics of each QoS routing protocol.https://doi.org/10.3390/s15092220

    Contributions based on cross-layer design for quality-of-service provisioning over DVB-S2/RCS broadband satellite system

    Get PDF
    Contributions based on cross-layer design for Quality-of-Service provisioning over DVB-S2/RCS Broadband Satellite Systems Nowadays, geostationary (GEO) satellite infrastructure plays a crucial role for the provisioning of IP services. Such infrastructure can provide ubiquity and broadband access, being feasible to reach disperse populations located worldwide within remote areas where terrestrial infrastructure can not be deployed. Nevertheless, due to the expansion of the World Wide Web (WWW), new IP applications such as Voice over IP (VoIP) and multimedia services requires considering different levels of individual packet treatment through the satellite network. This differentiation must include not only the Quality of Service (QoS) parameters to specify packet transmission priorities across the network nodes, but also the required amount of bandwidth assignment to guarantee its transport. In this context, the provisioning of QoS guarantees over GEO satellite systems becomes one of the main research areas of organizations such as the European Space Agency (ESA). Mainly because, their current infrastructures require continuous exploitation, as launching a new communication satellite is associated with excessive costs. Therefore, the support of IP services with QoS guarantees must be developed on the terrestrial segment to enable using the current assets. In this PhD thesis several contributions to improve the QoS provisioning over DVB-S2/RCS Broadband Satellite Systems have been developed. The contributions are based on cross-layer design, following the layered model standardized in the ETSI TR 102 157 and 462. The proposals take into account the drawbacks posed by GEO satellite systems such as delay, losses and bandwidth variations. The first contribution proposes QoSatArt, an architecture defined to improve QoS provisioning among services classes considering the physical layer variations due to the presence of rain events. The design is developed inside the gateway, including the specification of the main functional blocks to provide QoS guarantees and mechanisms to minimize de delay and jitter values experienced at the application layer. Here, a cross-layer design between the physical and the network layer has been proposed, to enforce the QoS specifications based on the available bandwidth. The proposed QoSatArt architecture is evaluated using the NS-2 simulation tool. In addition, the performance analysis of several standard Transmission Control Protocol (TCP) variants is also performed. This is carry out to find the most suitable TCP variant that enhances TCP transmission over a QoS architecture such as the QoSatArt. The second contribution proposes XPLIT, an architecture developed to enhance TCP transmission with QoS for DVB-S2/RCS satellite systems. Complementary to QoSatArt, XPLIT introduces Performance Enhanced Proxies (PEPs), which breaks the end-to-end semantic of TCP connections. However, it considers a cross-layer design between the network layer and the transport layer to enhance TCP transmission while providing them with QoS guarantees. Here, a modified TCP variant called XPLIT-TCP is proposed to send data through the forward and the return channel. XPLIT-TCP uses two control loops (the buffer occupancy and the service rate to provide optimized congestion control functions. The proposed XPLIT architecture is evaluated using the NS-2 simulation tool. Finally, the third contribution of this thesis consists on the development of a unified architecture to provide QoS guarantees based on cross-layer design over broadband satellite systems. It adopts the enhancements proposed by the QoSatArt architecture working at the network layer, in combination with the enhancements proposed by the XPLIT architecture working at the transport layer.Actualmente, los satélites Geoestacionarios (GEO) juegan un papel muy importante en la provisión de servicios IP. Esta infraestructura permite proveer ubicuidad y acceso de banda ancha, haciendo posible alcanzar poblaciones dispersas en zonas remotas donde la infraestructura terrestre es inexistente. Sin embargo, en la provisión de aplicaciones como Voz sobre IP (VoIP) y servicios multimedia, es importante considerar el tratamiento diferenciado de paquetes a través de la red satelital. Esta diferenciación debe considerar no solo los requerimientos de Calidad de Servicio (QoS) que especifican las prioridades de los paquetes a través de los nodos de red, si no también el ancho de banda asignado para garantizar su transporte. En este contexto, la provisión de garantías de QoS sobre satélites GEO es una de las Principales áreas de investigación de organizaciones como la Agencia Espacial Europea (ESA) persiguen. Esto se debe principalmente ya que dichas organizaciones requieren la explotación continua de sus activos, dado que lanzar un nuevo satélite al espacio representa costos excesivos. Como resultado, el soporte de servicios IP con calidad de servicio sobre la infraestructura satelital actual es de vital importancia. En esta tesis doctoral se presentan varias contribuciones para el soporte a la Calidad de Servicio en redes DVB-S2/RCS satelitales de banda ancha. Las contribuciones propuestas se basan principalmente en el diseño ”cross-layer” siguiendo el modelo de capas definido y estandarizado en las especificaciones ETSI TR 102 157 [ETS03] y 462 [10205]. Las contribuciones propuestas consideran las limitaciones presentes de los sistemas satelitales GEO como lo son el retardo de propagación, la perdida de paquetes y las variaciones de ancho de banda causados por eventos atmosféricos. La primera contribución propone QoSatArt, una arquitectura definida para mejorar el soporte a la QoS. Esta arquitectura considera las variaciones en la capa física debido a la presencia de eventos de lluvia para priorizar los niveles de QoS. El diseño se desarrolla en el gateway e incluye las especificaciones de los principales elementos funcionales y mecanismos para garantizar la QoS y minimizar el retardo presente en la capa de aplicación. Aquí, se propone un diseño ”cross-layer” entre la capa física y la capa de red, con el objetivo de reforzar las especificaciones de QoS considerando el ancho de banda disponible. La arquitectura QoSatArt es simulada y evaluada empleando la herramienta de simulación NS-2. Adicionalmente, un análisis de desempeño de diversas variantes de TCP (Transmission Control Protocol) es realizado con el objetivo de encontrar la variante de TCP más adecuada para trabajar en un ambiente con QoS como QoSatArt. La segunda contribución propone XPLIT, una arquitectura desarrollada para mejorar las transmisiones TCP con QoS en un sistema satelital DVB-S2/RCS. Complementario a QoSatArt, XPLIT emplea PEPs (Performance Enhanced Proxies), afectando la semántica end-to-end de las conexiones TCP. Sin embargo, XPLIT considera un diseño ”cross-layer” entre la capa de red y la capa de transporte con el objetivo de mejorar las transmisiones TCP considerando los parámetros de QoS como la ocupación de la cola y la tasa de transmisión (_i, _i). Aquí, se propone el uso de una nueva variante de TCP es propuesta llamada XPLIT-TCP, que usa dos bucles para proveer funciones mejoradas en el control de congestión. La arquitectura XPLIT es simulada y evaluada empleando la herramienta de simulación NS-2. Finalmente, la tercera contribución de esta tesis consiste en el desarrollo de un arquitectura unificada para el soporte a la QoS en redes satelitales de banda ancha basada en técnicas ”cross-layer”. Esta arquitectura adopta las mejoras propuestas por QoSatArt en la capa de red en combinación con las mejoras propuestas por XPLIT en la capa de transporte
    corecore