1,213 research outputs found

    Advanced channel coding for space mission telecommand links

    Full text link
    We investigate and compare different options for updating the error correcting code currently used in space mission telecommand links. Taking as a reference the solutions recently emerged as the most promising ones, based on Low-Density Parity-Check codes, we explore the behavior of alternative schemes, based on parallel concatenated turbo codes and soft-decision decoded BCH codes. Our analysis shows that these further options can offer similar or even better performance.Comment: 5 pages, 7 figures, presented at IEEE VTC 2013 Fall, Las Vegas, USA, Sep. 2013 Proc. IEEE Vehicular Technology Conference (VTC 2013 Fall), ISBN 978-1-6185-9, Las Vegas, USA, Sep. 201

    Rewriting Flash Memories by Message Passing

    Get PDF
    This paper constructs WOM codes that combine rewriting and error correction for mitigating the reliability and the endurance problems in flash memory. We consider a rewriting model that is of practical interest to flash applications where only the second write uses WOM codes. Our WOM code construction is based on binary erasure quantization with LDGM codes, where the rewriting uses message passing and has potential to share the efficient hardware implementations with LDPC codes in practice. We show that the coding scheme achieves the capacity of the rewriting model. Extensive simulations show that the rewriting performance of our scheme compares favorably with that of polar WOM code in the rate region where high rewriting success probability is desired. We further augment our coding schemes with error correction capability. By drawing a connection to the conjugate code pairs studied in the context of quantum error correction, we develop a general framework for constructing error-correction WOM codes. Under this framework, we give an explicit construction of WOM codes whose codewords are contained in BCH codes.Comment: Submitted to ISIT 201

    Order Statistics Based List Decoding Techniques for Linear Binary Block Codes

    Full text link
    The order statistics based list decoding techniques for linear binary block codes of small to medium block length are investigated. The construction of the list of the test error patterns is considered. The original order statistics decoding is generalized by assuming segmentation of the most reliable independent positions of the received bits. The segmentation is shown to overcome several drawbacks of the original order statistics decoding. The complexity of the order statistics based decoding is further reduced by assuming a partial ordering of the received bits in order to avoid the complex Gauss elimination. The probability of the test error patterns in the decoding list is derived. The bit error rate performance and the decoding complexity trade-off of the proposed decoding algorithms is studied by computer simulations. Numerical examples show that, in some cases, the proposed decoding schemes are superior to the original order statistics decoding in terms of both the bit error rate performance as well as the decoding complexity.Comment: 17 pages, 2 tables, 6 figures, submitted to IEEE Transactions on Information Theor

    Learned Belief-Propagation Decoding with Simple Scaling and SNR Adaptation

    Get PDF
    We consider the weighted belief-propagation (WBP) decoder recently proposed by Nachmani et al. where different weights are introduced for each Tanner graph edge and optimized using machine learning techniques. Our focus is on simple-scaling models that use the same weights across certain edges to reduce the storage and computational burden. The main contribution is to show that simple scaling with few parameters often achieves the same gain as the full parameterization. Moreover, several training improvements for WBP are proposed. For example, it is shown that minimizing average binary cross-entropy is suboptimal in general in terms of bit error rate (BER) and a new "soft-BER" loss is proposed which can lead to better performance. We also investigate parameter adapter networks (PANs) that learn the relation between the signal-to-noise ratio and the WBP parameters. As an example, for the (32,16) Reed-Muller code with a highly redundant parity-check matrix, training a PAN with soft-BER loss gives near-maximum-likelihood performance assuming simple scaling with only three parameters.Comment: 5 pages, 5 figures, submitted to ISIT 201

    Binary Message Passing Decoding of Product-like Codes

    Get PDF
    We propose a novel binary message passing decoding algorithm for product-like codes based on bounded distance decoding (BDD) of the component codes. The algorithm, dubbed iterative BDD with scaled reliability (iBDD-SR), exploits the channel reliabilities and is therefore soft in nature. However, the messages exchanged by the component decoders are binary (hard) messages, which significantly reduces the decoder data flow. The exchanged binary messages are obtained by combining the channel reliability with the BDD decoder output reliabilities, properly conveyed by a scaling factor applied to the BDD decisions. We perform a density evolution analysis for generalized low-density parity-check (GLDPC) code ensembles and spatially coupled GLDPC code ensembles, from which the scaling factors of the iBDD-SR for product and staircase codes, respectively, can be obtained. For the white additive Gaussian noise channel, we show performance gains up to 0.290.29 dB and 0.310.31 dB for product and staircase codes compared to conventional iterative BDD (iBDD) with the same decoder data flow. Furthermore, we show that iBDD-SR approaches the performance of ideal iBDD that prevents miscorrections.Comment: Accepted for publication in the IEEE Transactions on Communication
    • …
    corecore