4,135 research outputs found

    A review on analysis and synthesis of nonlinear stochastic systems with randomly occurring incomplete information

    Get PDF
    Copyright q 2012 Hongli Dong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.In the context of systems and control, incomplete information refers to a dynamical system in which knowledge about the system states is limited due to the difficulties in modeling complexity in a quantitative way. The well-known types of incomplete information include parameter uncertainties and norm-bounded nonlinearities. Recently, in response to the development of network technologies, the phenomenon of randomly occurring incomplete information has become more and more prevalent. Such a phenomenon typically appears in a networked environment. Examples include, but are not limited to, randomly occurring uncertainties, randomly occurring nonlinearities, randomly occurring saturation, randomly missing measurements and randomly occurring quantization. Randomly occurring incomplete information, if not properly handled, would seriously deteriorate the performance of a control system. In this paper, we aim to survey some recent advances on the analysis and synthesis problems for nonlinear stochastic systems with randomly occurring incomplete information. The developments of the filtering, control and fault detection problems are systematically reviewed. Latest results on analysis and synthesis of nonlinear stochastic systems are discussed in great detail. In addition, various distributed filtering technologies over sensor networks are highlighted. Finally, some concluding remarks are given and some possible future research directions are pointed out. © 2012 Hongli Dong et al.This work was supported in part by the National Natural Science Foundation of China under Grants 61273156, 61134009, 61273201, 61021002, and 61004067, the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the Royal Society of the UK, the National Science Foundation of the USA under Grant No. HRD-1137732, and the Alexander von Humboldt Foundation of German

    Optimized state estimation for nonlinear dynamical networks subject to fading measurements and stochastic coupling strength: An event-triggered communication mechanism

    Get PDF
    summary:This paper is concerned with the design of event-based state estimation algorithm for nonlinear complex networks with fading measurements and stochastic coupling strength. The event-based communication protocol is employed to save energy and enhance the network transmission efficiency, where the changeable event-triggered threshold is adopted to adjust the data transmission frequency. The phenomenon of fading measurements is described by a series of random variables obeying certain probability distribution. The aim of the paper is to propose a new recursive event-based state estimation strategy such that, for the admissible linearization error, fading measurements and stochastic coupling strength, a minimum upper bound of estimation error covariance is given by designing the estimator gain. Furthermore, the monotonicity relationship between the trace of the upper bound of estimation error covariance and the fading probability is pointed out from the theoretical aspect. Finally, a simulation example is used to show the effectiveness of developed state estimation algorithm

    Scalable Approach to Uncertainty Quantification and Robust Design of Interconnected Dynamical Systems

    Full text link
    Development of robust dynamical systems and networks such as autonomous aircraft systems capable of accomplishing complex missions faces challenges due to the dynamically evolving uncertainties coming from model uncertainties, necessity to operate in a hostile cluttered urban environment, and the distributed and dynamic nature of the communication and computation resources. Model-based robust design is difficult because of the complexity of the hybrid dynamic models including continuous vehicle dynamics, the discrete models of computations and communications, and the size of the problem. We will overview recent advances in methodology and tools to model, analyze, and design robust autonomous aerospace systems operating in uncertain environment, with stress on efficient uncertainty quantification and robust design using the case studies of the mission including model-based target tracking and search, and trajectory planning in uncertain urban environment. To show that the methodology is generally applicable to uncertain dynamical systems, we will also show examples of application of the new methods to efficient uncertainty quantification of energy usage in buildings, and stability assessment of interconnected power networks

    Fuzzy-model-based robust fault detection with stochastic mixed time-delays and successive packet dropouts

    Get PDF
    This is the Post-Print version of the Article. The official published version can be accessed from the link below - Copyright @ 2012 IEEEThis paper is concerned with the network-based robust fault detection problem for a class of uncertain discrete-time Takagi–Sugeno fuzzy systems with stochastic mixed time delays and successive packet dropouts. The mixed time delays comprise both the multiple discrete time delays and the infinite distributed delays. A sequence of stochastic variables is introduced to govern the random occurrences of the discrete time delays, distributed time delays, and successive packet dropouts, where all the stochastic variables are mutually independent but obey the Bernoulli distribution. The main purpose of this paper is to design a fuzzy fault detection filter such that the overall fault detection dynamics is exponentially stable in the mean square and, at the same time, the error between the residual signal and the fault signal is made as small as possible. Sufficient conditions are first established via intensive stochastic analysis for the existence of the desired fuzzy fault detection filters, and then, the corresponding solvability conditions for the desired filter gains are established. In addition, the optimal performance index for the addressed robust fuzzy fault detection problem is obtained by solving an auxiliary convex optimization problem. An illustrative example is provided to show the usefulness and effectiveness of the proposed design method.This work was supported in part by the National Natural Science Foundation of China under Grant 61028008, 60825303, 61004067, National 973 Project under Grant 2009CB320600, the Key Laboratory of Integrated Automation for the Process Industry (Northeastern University), Ministry of Education, the Engineering and Physical Sciences Research Council (EPSRC) of the U.K. under Grant GR/S27658/01, the Royal Society of the U.K., the University of Hong Kong under Grant HKU/CRCG/200907176129 and the Alexander von Humboldt Foundation of Germany

    Computation-Communication Trade-offs and Sensor Selection in Real-time Estimation for Processing Networks

    Full text link
    Recent advances in electronics are enabling substantial processing to be performed at each node (robots, sensors) of a networked system. Local processing enables data compression and may mitigate measurement noise, but it is still slower compared to a central computer (it entails a larger computational delay). However, while nodes can process the data in parallel, the centralized computational is sequential in nature. On the other hand, if a node sends raw data to a central computer for processing, it incurs communication delay. This leads to a fundamental communication-computation trade-off, where each node has to decide on the optimal amount of preprocessing in order to maximize the network performance. We consider a network in charge of estimating the state of a dynamical system and provide three contributions. First, we provide a rigorous problem formulation for optimal real-time estimation in processing networks in the presence of delays. Second, we show that, in the case of a homogeneous network (where all sensors have the same computation) that monitors a continuous-time scalar linear system, the optimal amount of local preprocessing maximizing the network estimation performance can be computed analytically. Third, we consider the realistic case of a heterogeneous network monitoring a discrete-time multi-variate linear system and provide algorithms to decide on suitable preprocessing at each node, and to select a sensor subset when computational constraints make using all sensors suboptimal. Numerical simulations show that selecting the sensors is crucial. Moreover, we show that if the nodes apply the preprocessing policy suggested by our algorithms, they can largely improve the network estimation performance.Comment: 15 pages, 16 figures. Accepted journal versio

    A Prediction-Based Approach to Distributed Filtering with Missing Measurements and Communication Delays through Sensor Networks

    Get PDF
    10.13039/501100001809-National Natural Science Foundation of China (Grant Number: 61673141, 61873148, 61933007 and 61773144); 10.13039/501100008530-European Regional Development Fund and Sêr Cymru Fellowship (Grant Number: 80761-USW-059); Outstanding Youth Science Foundation of Heilongjiang Province of China (Grant Number: JC2018001); Fundamental Research Foundation for Universities of Heilongjiang Province 10.13039/100005156-Alexander von Humboldt Foundation of Germany

    Extending Complex Event Processing for Advanced Applications

    Get PDF
    Recently numerous emerging applications, ranging from on-line financial transactions, RFID based supply chain management, traffic monitoring to real-time object monitoring, generate high-volume event streams. To meet the needs of processing event data streams in real-time, Complex Event Processing technology (CEP) has been developed with the focus on detecting occurrences of particular composite patterns of events. By analyzing and constructing several real-world CEP applications, we found that CEP needs to be extended with advanced services beyond detecting pattern queries. We summarize these emerging needs in three orthogonal directions. First, for applications which require access to both streaming and stored data, we need to provide a clear semantics and efficient schedulers in the face of concurrent access and failures. Second, when a CEP system is deployed in a sensitive environment such as health care, we wish to mitigate possible privacy leaks. Third, when input events do not carry the identification of the object being monitored, we need to infer the probabilistic identification of events before feed them to a CEP engine. Therefore this dissertation discusses the construction of a framework for extending CEP to support these critical services. First, existing CEP technology is limited in its capability of reacting to opportunities and risks detected by pattern queries. We propose to tackle this unsolved problem by embedding active rule support within the CEP engine. The main challenge is to handle interactions between queries and reactions to queries in the high-volume stream execution. We hence introduce a novel stream-oriented transactional model along with a family of stream transaction scheduling algorithms that ensure the correctness of concurrent stream execution. And then we demonstrate the proposed technology by applying it to a real-world healthcare system and evaluate the stream transaction scheduling algorithms extensively using real-world workload. Second, we are the first to study the privacy implications of CEP systems. Specifically we consider how to suppress events on a stream to reduce the disclosure of sensitive patterns, while ensuring that nonsensitive patterns continue to be reported by the CEP engine. We formally define the problem of utility-maximizing event suppression for privacy preservation. We then design a suite of real-time solutions that eliminate private pattern matches while maximizing the overall utility. Our first solution optimally solves the problem at the event-type level. The second solution, at event-instance level, further optimizes the event-type level solution by exploiting runtime event distributions using advanced pattern match cardinality estimation techniques. Our experimental evaluation over both real-world and synthetic event streams shows that our algorithms are effective in maximizing utility yet still efficient enough to offer near real time system responsiveness. Third, we observe that in many real-world object monitoring applications where the CEP technology is adopted, not all sensed events carry the identification of the object whose action they report on, so called €œnon-ID-ed€� events. Such non-ID-ed events prevent us from performing object-based analytics, such as tracking, alerting and pattern matching. We propose a probabilistic inference framework to tackle this problem by inferring the missing object identification associated with an event. Specifically, as a foundation we design a time-varying graphic model to capture correspondences between sensed events and objects. Upon this model, we elaborate how to adapt the state-of-the-art Forward-backward inference algorithm to continuously infer probabilistic identifications for non-ID-ed events. More important, we propose a suite of strategies for optimizing the performance of inference. Our experimental results, using large-volume streams of a real-world health care application, demonstrate the accuracy, efficiency, and scalability of the proposed technology
    corecore