2,857 research outputs found

    Random Linear Network Coding for 5G Mobile Video Delivery

    Get PDF
    An exponential increase in mobile video delivery will continue with the demand for higher resolution, multi-view and large-scale multicast video services. Novel fifth generation (5G) 3GPP New Radio (NR) standard will bring a number of new opportunities for optimizing video delivery across both 5G core and radio access networks. One of the promising approaches for video quality adaptation, throughput enhancement and erasure protection is the use of packet-level random linear network coding (RLNC). In this review paper, we discuss the integration of RLNC into the 5G NR standard, building upon the ideas and opportunities identified in 4G LTE. We explicitly identify and discuss in detail novel 5G NR features that provide support for RLNC-based video delivery in 5G, thus pointing out to the promising avenues for future research.Comment: Invited paper for Special Issue "Network and Rateless Coding for Video Streaming" - MDPI Informatio

    Resource Allocation Frameworks for Network-coded Layered Multimedia Multicast Services

    Get PDF
    The explosive growth of content-on-the-move, such as video streaming to mobile devices, has propelled research on multimedia broadcast and multicast schemes. Multi-rate transmission strategies have been proposed as a means of delivering layered services to users experiencing different downlink channel conditions. In this paper, we consider Point-to-Multipoint layered service delivery across a generic cellular system and improve it by applying different random linear network coding approaches. We derive packet error probability expressions and use them as performance metrics in the formulation of resource allocation frameworks. The aim of these frameworks is both the optimization of the transmission scheme and the minimization of the number of broadcast packets on each downlink channel, while offering service guarantees to a predetermined fraction of users. As a case of study, our proposed frameworks are then adapted to the LTE-A standard and the eMBMS technology. We focus on the delivery of a video service based on the H.264/SVC standard and demonstrate the advantages of layered network coding over multi-rate transmission. Furthermore, we establish that the choice of both the network coding technique and resource allocation method play a critical role on the network footprint, and the quality of each received video layer.Comment: IEEE Journal on Selected Areas in Communications - Special Issue on Fundamental Approaches to Network Coding in Wireless Communication Systems. To appea

    Multi-user video streaming using unequal error protection network coding in wireless networks

    Get PDF
    In this paper, we investigate a multi-user video streaming system applying unequal error protection (UEP) network coding (NC) for simultaneous real-time exchange of scalable video streams among multiple users. We focus on a simple wireless scenario where users exchange encoded data packets over a common central network node (e.g., a base station or an access point) that aims to capture the fundamental system behaviour. Our goal is to present analytical tools that provide both the decoding probability analysis and the expected delay guarantees for different importance layers of scalable video streams. Using the proposed tools, we offer a simple framework for design and analysis of UEP NC based multi-user video streaming systems and provide examples of system design for video conferencing scenario in broadband wireless cellular networks

    Sleep Period Optimization Model For Layered Video Service Delivery Over eMBMS Networks

    Full text link
    Long Term Evolution-Advanced (LTE-A) and the evolved Multimedia Broadcast Multicast System (eMBMS) are the most promising technologies for the delivery of highly bandwidth demanding applications. In this paper we propose a green resource allocation strategy for the delivery of layered video streams to users with different propagation conditions. The goal of the proposed model is to minimize the user energy consumption. That goal is achieved by minimizing the time required by each user to receive the broadcast data via an efficient power transmission allocation model. A key point in our system model is that the reliability of layered video communications is ensured by means of the Random Linear Network Coding (RLNC) approach. Analytical results show that the proposed resource allocation model ensures the desired quality of service constraints, while the user energy footprint is significantly reduced.Comment: Proc. of IEEE ICC 2015, Selected Areas in Communications Symposium - Green Communications Track, to appea

    A Novel Network Coded Parallel Transmission Framework for High-Speed Ethernet

    Get PDF
    Parallel transmission, as defined in high-speed Ethernet standards, enables to use less expensive optoelectronics and offers backwards compatibility with legacy Optical Transport Network (OTN) infrastructure. However, optimal parallel transmission does not scale to large networks, as it requires computationally expensive multipath routing algorithms to minimize differential delay, and thus the required buffer size, optimize traffic splitting ratio, and ensure frame synchronization. In this paper, we propose a novel framework for high-speed Ethernet, which we refer to as network coded parallel transmission, capable of effective buffer management and frame synchronization without the need for complex multipath algorithms in the OTN layer. We show that using network coding can reduce the delay caused by packet reordering at the receiver, thus requiring a smaller overall buffer size, while improving the network throughput. We design the framework in full compliance with high-speed Ethernet standards specified in IEEE802.3ba and present solutions for network encoding, data structure of coded parallel transmission, buffer management and decoding at the receiver side. The proposed network coded parallel transmission framework is simple to implement and represents a potential major breakthrough in the system design of future high-speed Ethernet.Comment: 6 pages, 8 figures, Submitted to Globecom201

    Random Linear Network Coding For Time Division Duplexing: When To Stop Talking And Start Listening

    Full text link
    A new random linear network coding scheme for reliable communications for time division duplexing channels is proposed. The setup assumes a packet erasure channel and that nodes cannot transmit and receive information simultaneously. The sender transmits coded data packets back-to-back before stopping to wait for the receiver to acknowledge (ACK) the number of degrees of freedom, if any, that are required to decode correctly the information. We provide an analysis of this problem to show that there is an optimal number of coded data packets, in terms of mean completion time, to be sent before stopping to listen. This number depends on the latency, probabilities of packet erasure and ACK erasure, and the number of degrees of freedom that the receiver requires to decode the data. This scheme is optimal in terms of the mean time to complete the transmission of a fixed number of data packets. We show that its performance is very close to that of a full duplex system, while transmitting a different number of coded packets can cause large degradation in performance, especially if latency is high. Also, we study the throughput performance of our scheme and compare it to existing half-duplex Go-back-N and Selective Repeat ARQ schemes. Numerical results, obtained for different latencies, show that our scheme has similar performance to the Selective Repeat in most cases and considerable performance gain when latency and packet error probability is high.Comment: 9 pages, 9 figures, Submitted to INFOCOM'0

    Analysis and optimization of sparse random linear network coding for reliable multicast services

    Get PDF
    Point-to-multipoint communications are expected to play a pivotal role in next-generation networks. This paper refers to a cellular system transmitting layered multicast services to a multicast group of users. Reliability of communications is ensured via different Random Linear Network Coding (RLNC) techniques. We deal with a fundamental problem: the computational complexity of the RLNC decoder. The higher the number of decoding operations is, the more the user’s computational overhead grows and, consequently, the faster the battery of mobile devices drains. By referring to several sparse RLNC techniques, and without any assumption on the implementation of the RLNC decoder in use, we provide an efficient way to characterise the performance of users targeted by ultra-reliable layered multicast services. The proposed modelling allows to efficiently derive the average number of coded packet transmissions needed to recover one or more service layers. We design a convex resource allocation framework that allows to minimise the complexity of the RLNC decoder by jointly optimising the transmission parameters and the sparsity of the code. The designed optimisation framework also ensures service guarantees to predetermined fractions of users. The performance of the proposed optimisation framework is then investigated in a LTE-A eMBMS network multicasting H.264/SVC video services
    • …
    corecore