15 research outputs found

    Visible Light Communication (VLC)

    Get PDF
    Visible light communication (VLC) using light-emitting diodes (LEDs) or laser diodes (LDs) has been envisioned as one of the key enabling technologies for 6G and Internet of Things (IoT) systems, owing to its appealing advantages, including abundant and unregulated spectrum resources, no electromagnetic interference (EMI) radiation and high security. However, despite its many advantages, VLC faces several technical challenges, such as the limited bandwidth and severe nonlinearity of opto-electronic devices, link blockage and user mobility. Therefore, significant efforts are needed from the global VLC community to develop VLC technology further. This Special Issue, “Visible Light Communication (VLC)”, provides an opportunity for global researchers to share their new ideas and cutting-edge techniques to address the above-mentioned challenges. The 16 papers published in this Special Issue represent the fascinating progress of VLC in various contexts, including general indoor and underwater scenarios, and the emerging application of machine learning/artificial intelligence (ML/AI) techniques in VLC

    Plastic Optical Fibers as Passive Optical Front-Ends for Visible Light Communication

    Get PDF

    Plastic Optical Fibers as Passive Optical Front-Ends for Visible Light Communication

    Get PDF

    AI/ML assisted Li-Fi communication systems for the future 6G communication systems

    Get PDF
    Η πανταχού παρούσα εξάπλωση της ασύρματης σύνδεσης κατά την τελευταία δεκαετία είχε ως αποτέλεσμα μια τεράστια αύξηση του όγκου της κίνησης και μια τεράστια ζήτηση, η οποία δημιούργησε μια αξιοσημείωτη πίεση στους πόρους του δικτύου που δεν μπορούν να διαχειριστούν εξαρχής λόγω της σπανιότητας του εύρους ζώνης. Επομένως; Η Optical Wireless Communication θεωρείται ως η αναδυόμενη λύση για τα τρέχοντα δίκτυα ραδιοφώνου, όπου λειτουργεί στην εκμετάλλευση του φωτός ως ασύρματος φορέας και έχει ταξινομηθεί ως φιλική προς το περιβάλλον τεχνολογία λόγω της βιωσιμότητας και του επιπέδου ασφάλειας. Το Light-Fidelity (LiFi) είναι το πιο πρόσφατο παράδειγμα της οπτικής ασύρματης επικοινωνίας όπου υπάρχουν νέα χαρακτηριστικά όπως π. Στο σύστημα έχουν εισαχθεί τεχνικές διαμόρφωσης πολλαπλών φορέων και τεχνολογίες πολλαπλής πρόσβασης. Αυτή η αναφορά παρουσιάζει τη διαδικασία σχεδιασμού ενός πομποδέκτη LiFi που χρησιμοποιεί το MATLAB. όπου όλα τα μέρη του συστήματος προσομοιώθηκαν για να μιμηθούν ένα σύστημα LiFi σε ένα εσωτερικό περιβάλλον που είναι ένα δωμάτιο με διαστάσεις 5 x 5 x 3 m. Ο πομποδέκτης έχει χαρακτηριστεί με χρήση οπτοηλεκτρονικών συσκευών περοβσκίτη λόγω της πολλά υποσχόμενης απόδοσής του όσον αφορά την εκπομπή φωτός και την ανίχνευση. Ωστόσο, έχει προκύψει σημαντικός όγκος θορύβου λόγω της φωτοανίχνευσης που έχει μετριαστεί με την εισαγωγή ενός ενισχυτή transimpedance μετά τον φωτοανιχνευτή και την εφαρμογή ενός μηχανισμού εκτίμησης καναλιών στην πλευρά του δέκτη. Τα ληφθέντα αποτελέσματα έδειξαν ότι το σχεδιασμένο σύστημα μπορεί να επιτύχει περίπου 3,5 Mbps με 25dB SNR και λιγότερο από 4x10^(-6) BER χρησιμοποιώντας 5 πομπούς με 1000 LED σε κάθε πομπό, χωρίς να λαμβάνεται υπόψη καμία εξωτερική πηγή θορύβου όπως ο θόρυβος περιβάλλοντος. Οι πιθανοί περιορισμοί για ένα τέτοιο σύστημα είναι οι προδιαγραφές των οπτοηλεκτρονικών συσκευών που περιλαμβάνουν, την επιφάνεια της συσκευής, το οπτικό πεδίο του φωτοανιχνευτή και τη γωνία μισής ισχύος του LED. Ωστόσο, τα συστήματα οπτικών ασύρματων επικοινωνιών είναι πιο ευέλικτα για βελτιστοποίηση και τα σχέδια μπορούν να τυποποιηθούν σύμφωνα με την ζητούμενη υπηρεσία και τη φύση του περιβάλλοντος λόγω της ποικιλίας των διαθέσιμων συσκευών με χαμηλό κόστος.The ubiquitous spread of the wireless connection during the last decade has resulted in a tremendous growth in the traffic volume and a huge demand, which created a remarkable pressure on the network’s resources that can’t be managed due to bandwidth scarcity in the first place. Therefore; Optical Wireless Communication is considered as the emerging solution for the current radio networks, where it works on exploiting light as a wireless carrier and it has been classified as eco-friendly technology due to its sustainability and safety level. Light-Fidelity (LiFi) is the most recent paradigm of the optical wireless communication where new features such as; multicarrier modulation techniques and multiple access technologies have been introduced to the system. This report presents the design process of a LiFi transceiver using MATLAB; where all system parts were simulated to imitate a LiFi system in an indoor environment which is a room with dimensions of 5 x 5 x 3m. The transceiver has been characterised using perovskite optoelectronic devices due to its promising performance in terms of light emission and detection. However, a considerable amount of noise has been resulted due to the photodetection that has been mitigated using inserting a transimpedance amplifier after the photodetector and implement a channel estimation mechanism at the receiver side. The obtained results have demonstrated that the designed system can achieve around 3.5Mbps with 25dB SNR and less then 4x10^(-6) BER using 5 transmitters with 1000 LED at each transmitter, without considering any external source of noise such as the ambient noise. The prospective limitations for such a system are the optoelectronic devices specs which include, the device’s surface area, the photodetector’s field of view, and the half power angle of the LED. However, the optical wireless communication systems are more flexible to be optimized and the designs can be standardized according to the requested service and the environment nature due to the variety of the available devices with low cost

    Roadmap of optical communications

    Get PDF
    © 2016 IOP Publishing Ltd. Lightwave communications is a necessity for the information age. Optical links provide enormous bandwidth, and the optical fiber is the only medium that can meet the modern society's needs for transporting massive amounts of data over long distances. Applications range from global high-capacity networks, which constitute the backbone of the internet, to the massively parallel interconnects that provide data connectivity inside datacenters and supercomputers. Optical communications is a diverse and rapidly changing field, where experts in photonics, communications, electronics, and signal processing work side by side to meet the ever-increasing demands for higher capacity, lower cost, and lower energy consumption, while adapting the system design to novel services and technologies. Due to the interdisciplinary nature of this rich research field, Journal of Optics has invited 16 researchers, each a world-leading expert in their respective subfields, to contribute a section to this invited review article, summarizing their views on state-of-the-art and future developments in optical communications

    Broadband optical wireless communications for the teleoperation of mining equipment

    Get PDF
    The current level of technological advancement of our civilization serving more than seven billion human population requires new sources of biotic and abiotic natural resources. The depletion and scarcity of high-grade mineral deposits in dry land are forcing the Natural Re- sources industry to look for alternate sources in underwater environments and outer space, requiring the creation of reliable broadband omnidirectional wireless communication systems that allows the teleoperation of exploration and production equipment. Within these ob- jectives, Optical Wireless Communications (OWC) are starting to be used as an alternative or complement to standard radio systems, due to important advantages that optical wave- lengths have to transmit data: potential for Terabit/s bit rates, broadband operation in underwater environments, energy e ciency and better protection against interference and eavesdropping. This research focus in two crucial design aspects required to implement broadband OWC systems for the teleoperation of mining equipment: high bandwidth wide beam photon emission and low noise omnidirectional Free-Space Optical (FSO) receivers. Novel OWC omnidirectional receivers using guided wavelength-shifting photon concentra- tion are experimented in over 100 meters range vehicle teleoperation.Master of Science (MSc) in Natural Resources Engineerin

    A White Paper on Broadband Connectivity in 6G

    Get PDF
    Executive Summary This white paper explores the road to implementing broadband connectivity in future 6G wireless systems. Different categories of use cases are considered, from extreme capacity with peak data rates up to 1 Tbps, to raising the typical data rates by orders-of-magnitude, to support broadband connectivity at railway speeds up to 1000 km/h. To achieve these goals, not only the terrestrial networks will be evolved but they will also be integrated with satellite networks, all facilitating autonomous systems and various interconnected structures. We believe that several categories of enablers at the infrastructure, spectrum, and protocol/algorithmic levels are required to realize the intended broadband connectivity goals in 6G. At the infrastructure level, we consider ultra-massive MIMO technology (possibly implemented using holographic radio), intelligent reflecting surfaces, user-centric and scalable cell-free networking, integrated access and backhaul, and integrated space and terrestrial networks. At the spectrum level, the network must seamlessly utilize sub-6 GHz bands for coverage and spatial multiplexing of many devices, while higher bands will be used for pushing the peak rates of point-to-point links. The latter path will lead to THz communications complemented by visible light communications in specific scenarios. At the protocol/algorithmic level, the enablers include improved coding, modulation, and waveforms to achieve lower latencies, higher reliability, and reduced complexity. Different options will be needed to optimally support different use cases. The resource efficiency can be further improved by using various combinations of full-duplex radios, interference management based on rate-splitting, machine-learning-based optimization, coded caching, and broadcasting. Finally, the three levels of enablers must be utilized not only to deliver better broadband services in urban areas, but also to provide full-coverage broadband connectivity must be one of the key outcomes of 6G

    On the Road to 6G: Visions, Requirements, Key Technologies and Testbeds

    Get PDF
    Fifth generation (5G) mobile communication systems have entered the stage of commercial development, providing users with new services and improved user experiences as well as offering a host of novel opportunities to various industries. However, 5G still faces many challenges. To address these challenges, international industrial, academic, and standards organizations have commenced research on sixth generation (6G) wireless communication systems. A series of white papers and survey papers have been published, which aim to define 6G in terms of requirements, application scenarios, key technologies, etc. Although ITU-R has been working on the 6G vision and it is expected to reach a consensus on what 6G will be by mid-2023, the related global discussions are still wide open and the existing literature has identified numerous open issues. This paper first provides a comprehensive portrayal of the 6G vision, technical requirements, and application scenarios, covering the current common understanding of 6G. Then, a critical appraisal of the 6G network architecture and key technologies is presented. Furthermore, existing testbeds and advanced 6G verification platforms are detailed for the first time. In addition, future research directions and open challenges are identified for stimulating the on-going global debate. Finally, lessons learned to date concerning 6G networks are discussed
    corecore