194 research outputs found

    Development and Implementation of Some Controllers for Performance Enhancement and Effective Utilization of Induction Motor Drive

    Get PDF
    The technological development in the field of power electronics and DSP technology is rapidly changing the aspect of drive technology. Implementations of advanced control strategies like field oriented control, linearization control, etc. to AC drives with variable voltage, and variable frequency source is possible because of the advent of high modulating frequency PWM inverters. The modeling complexity in the drive system and the subsequent requirement for modern control algorithms are being easily taken care by high computational power, low-cost DSP controllers. The present work is directed to study, design, development, and implementation of various controllers and their comparative evaluations to identify the proper controller for high-performance induction motor (IM) drives. The dynamic modeling for decoupling control of IM is developed by making the flux and torque decoupled. The simulation is carried out in the stationary reference frame with linearized control based on state-space linearization technique. Further, comprehensive and systematic design procedures are derived to tune the PI controllers for both electrical and mechanical subsystems. However, the PI-controller performance is not satisfactory under various disturbances and system uncertainties. Also, precise mathematical model, gain values, and continuous tuning are required for the controller design to obtain high performance. Thus, to overcome these drawbacks, an adapted control strategy based on Adaptive Neuro-Fuzzy Inference System (ANFIS) based controller is developed and implemented in real-time to validate different control strategies. The superiority of the proposed controller is analyzed and is contrasted with the conventional PI controller-based linearized IM drive. The simplified neuro-fuzzy control (NFC) integrates the concept of fuzzy logic and neural network structure like conventional NFC, but it has the advantages of simplicity and improved computational efficiency over conventional NFC as the single input introduced here is an error instead of two inputs error and change in error as in conventional NFC. This structure makes the proposed NFC robust and simple as compared to conventional NFC and thus, can be easily applied to real-time industrial applications. The proposed system incorporated with different control methods is also validated with extensive experimental results using DSP2812. The effectiveness of the proposed method using feedback linearization of IM drive is investigated in simulation as well as in experiment with different working modes. It is evident from the comparative results that the system performance is not deteriorated using proposed simplified NFC as compared to the conventional NFC, rather it shows superior performance over PI-controller-based drive. A hybrid fuel cell (FC) supply system to deliver the power demanded by the feedback linearization (FBL) based IM drive is designed and implemented. The modified simple hybrid neuro-fuzzy sliding-mode control (NFSMC) incorporated with the intuitive FBL substantially reduces torque chattering and improves speed response, giving optimal drive performance under system uncertainties and disturbances. This novel technique also has the benefit of reduced computational burden over conventional NFSMC and thus, suitable for real-time industrial applications. The parameters of the modified NFC is tuned by an adaptive mechanism based on sliding-mode control (SMC). A FC stack with a dc/dc boost converter is considered here as a separate external source during interruption of main supply for maintaining the supply to the motor drive control through the inverter, thereby reducing the burden and average rating of the inverter. A rechargeable battery used as an energy storage supplements the FC during different operating conditions of the drive system. The effectiveness of the proposed method using FC-based linearized IM drive is investigated in simulation, and the efficacy of the proposed controller is validated in real-time. It is evident from the results that the system provides optimal dynamic performance in terms of ripples, overshoot, and settling time responses and is robust in terms of parameters variation and external load

    Particle swarm optimization-based stator resistance observer for speed sensorless induction motor drive

    Get PDF
    This paper presents a different technique for the online stator resistance estimation using a particle swarm optimization (PSO) based algorithm for rotor flux oriented control schemes of induction motor drives without a rotor speed sensor. First, a conventional proportional-integral controller-based stator resistance estimation technique is used for a speed sensorless control scheme with two different model reference adaptive system (MRAS) concepts. Finally, a novel method for the stator resistance estimation based on the PSO algorithm is presented for the two MRAS-type observers. Simulation results in the Matlab/Simulink environment show good adaptability of the proposed estimation model while the stator resistance is varied to 200% of the nominal value. The results also confirm more accurate stator resistance and rotor speed estimation in comparison with the conventional technique

    Speed Control of Induction Motor using LQG

    Get PDF
    The electric motor is one of the technological developments which can support the production process. Not only in the manufacturing, but also in the transportation sector. The AC motor is divided into the synchronous and asynchronous motor. One type of asynchronous motor which widely used is the induction motor. In this study, the application of the IFOC control method and the LQG speed control method will be used to control the speed of an induction motor. The PID algorithm is also used as a comparison. Tests were carried out using MATLAB software. The speed variation and load variation are tested to validate the controller performance. PID is superior in terms of settling time and IAE. On the other hand, LQG is better in energy consumption. In terms of IAE, LQG has a higher value compared to PID by up to 56.67%. On the other hand, LQG is superior in terms of energy, which is 8.38% more efficient

    Modelling, simulation and analysis of DSIM using artificial intelligent controller

    Get PDF
    This paper presents an elaboration for speed control of dual stator induction motor (DSIM) using artificial intelligent controller. The main problem with the conventional fuzzy controllers is that the parameters associated with the membership functions and the rules depend broadly on the intuition of the experts. To overcome this problem, adaptive neuro-fuzzy inference system (ANFIS) controller is proposed in this paper. The elaboration allows to compare simulation results between classical and artificial intelligent controllers. The fuzzy logic controller (FLC) and ANFIS controllers are also introduced to the system for keeping the motor speed to be constant when the load varies. Comparison between PI, fuzzy and Adaptive neuro-fuzzy controller-based dynamic performance of DSIM drive has been presented. ANFIS-based control of DSIM will prove to be more reliable than other control methods. The performance of the DSIM drive has been analyzed for constant load and change in speed conditions.&nbsp

    Co-simulation of self-adjusting fuzzy PI controller for the robot with two-axes system

    Get PDF
    This paper presents the co-simulation of the self-adjusting fuzzy PI controller to control a two-axes system. Each axis was driven by a permanent magnet linear synchronous motor (PMLSM). The position and speed controller used the fuzzy PI algorithm with parameters adjusted by a radial basis function neural network (RBFNN). The vector control was applied to the decoupled effect of the PMLSM. The field programmable gate array (FPGA) was used to control both axes of the system. The very high-speed integrated circuit-hardware description language (VHDL) was developed in the Quartus II software environment, provided by Altera, to analyze and synthesize designs. Firstly, the mathematical model of PMLSM and fuzzy PI was introduced. Secondly, the RBFNN adjusted the knowledge base of the fuzzy PI. Thirdly, the motion trajectory was introduced for testing the control algorithm. Fourthly, the implementation of the controller based on FPGA with the FSM method and the structure of co-simulation between Matlab/Simulink and ModelSim were set up. Finally, discussion about the results proved the effectiveness of the control system, determining the exact position and trajectory of the XY axis system. This research was successful in implementing a two-motor controller within one chip

    Advanced Control Methods of Induction Motor: a Review

    Get PDF
    In this paper, various types of advanced control methods of the induction motor are discussed, and a comparision between these methods have been brought out. This paper also discusses about the application areas of these new methods. The objective of this review is to conclude which method is the best control scheme among all of these methods. The related block diagrams for various control schemes are also illustrated along with various steps involved in the implementation of those schemes. Advantages and disadvantages of the schemes are also presented

    Advanced Control Methods of Induction Motor: A Review

    Get PDF
    In this paper, various types of advanced control methods of the induction motor are discussed, and a comparision between these methods have been brought out. This paper also discusses about the application areas of these new methods. The objective of this review is to conclude which method is the best control scheme among all of these methods. The related block diagrams for various control schemes are also illustrated along with various steps involved in the implementation of those schemes. Advantages and disadvantages of the schemes are also presented
    corecore