5,269 research outputs found

    A fast GPU Monte Carlo Radiative Heat Transfer Implementation for Coupling with Direct Numerical Simulation

    Full text link
    We implemented a fast Reciprocal Monte Carlo algorithm, to accurately solve radiative heat transfer in turbulent flows of non-grey participating media that can be coupled to fully resolved turbulent flows, namely to Direct Numerical Simulation (DNS). The spectrally varying absorption coefficient is treated in a narrow-band fashion with a correlated-k distribution. The implementation is verified with analytical solutions and validated with results from literature and line-by-line Monte Carlo computations. The method is implemented on GPU with a thorough attention to memory transfer and computational efficiency. The bottlenecks that dominate the computational expenses are addressed and several techniques are proposed to optimize the GPU execution. By implementing the proposed algorithmic accelerations, a speed-up of up to 3 orders of magnitude can be achieved, while maintaining the same accuracy

    Accurate solutions for radiative heat transfer in two-dimensional axisymmetric enclosures with gas radiation and reflective surfaces

    Get PDF
    Il y a une erreur d'impression à l'intérieur de la revue, qui indique pour référence le volume 46. Il s'agit bien du volume 47, n°1.International audienceAccurate solutions for benchmarking purposes in two-dimensional axisymmetric enclosures with reflective surfaces have been obtained using the Monte Carlo method (MCM) based on the net exchange formulation (NEF). Previous applications of the MCM-NEF have been restricted to multidimensional problems with black boundaries or one-dimensional problems with gray boundaries. Here, the extension to multidimensional enclosures with gray boundaries is presented. The medium is a mixture of H 2 O, CO 2 , N 2 , and soot at atmospheric pressure, and its radiative properties are computed using the correlated k-distribution method. Predictions obtained using the discrete ordinates method are included, showing good agreement with the benchmark MCM=NEF solutions

    ROOT - A C++ Framework for Petabyte Data Storage, Statistical Analysis and Visualization

    Full text link
    ROOT is an object-oriented C++ framework conceived in the high-energy physics (HEP) community, designed for storing and analyzing petabytes of data in an efficient way. Any instance of a C++ class can be stored into a ROOT file in a machine-independent compressed binary format. In ROOT the TTree object container is optimized for statistical data analysis over very large data sets by using vertical data storage techniques. These containers can span a large number of files on local disks, the web, or a number of different shared file systems. In order to analyze this data, the user can chose out of a wide set of mathematical and statistical functions, including linear algebra classes, numerical algorithms such as integration and minimization, and various methods for performing regression analysis (fitting). In particular, ROOT offers packages for complex data modeling and fitting, as well as multivariate classification based on machine learning techniques. A central piece in these analysis tools are the histogram classes which provide binning of one- and multi-dimensional data. Results can be saved in high-quality graphical formats like Postscript and PDF or in bitmap formats like JPG or GIF. The result can also be stored into ROOT macros that allow a full recreation and rework of the graphics. Users typically create their analysis macros step by step, making use of the interactive C++ interpreter CINT, while running over small data samples. Once the development is finished, they can run these macros at full compiled speed over large data sets, using on-the-fly compilation, or by creating a stand-alone batch program. Finally, if processing farms are available, the user can reduce the execution time of intrinsically parallel tasks - e.g. data mining in HEP - by using PROOF, which will take care of optimally distributing the work over the available resources in a transparent way

    Whole Farm Income Insurance in a Canadian Context

    Get PDF
    This paper employs mean-variance and mean-skewness optimization to investigate farmers’ crop choices under Gross Revenue Insurance (GRIP), Whole Farm Income Insurance, the Canadian Agricultural Income Stabilization program, and its modified 2008 program AgrInvest. To our knowledge this paper is the first to fully consider the endogenous optimization of whole farm insurance in a farm optimization model. The results indicate that farmers will alter farm plans significantly in response to the type of insurance offered and the level of subsidy. Farmers will take on production risks that they would not otherwise take and this risk taking behavior is exacerbated by subsidy.Agricultural Insurance, Skewness Maximization, Mean-Variance, Farm Income Insurance, GRIP, CAIS, AgrInvest, Agricultural Finance,

    Path-tracing Monte Carlo Library for 3D Radiative Transfer in Highly Resolved Cloudy Atmospheres

    Full text link
    Interactions between clouds and radiation are at the root of many difficulties in numerically predicting future weather and climate and in retrieving the state of the atmosphere from remote sensing observations. The large range of issues related to these interactions, and in particular to three-dimensional interactions, motivated the development of accurate radiative tools able to compute all types of radiative metrics, from monochromatic, local and directional observables, to integrated energetic quantities. In the continuity of this community effort, we propose here an open-source library for general use in Monte Carlo algorithms. This library is devoted to the acceleration of path-tracing in complex data, typically high-resolution large-domain grounds and clouds. The main algorithmic advances embedded in the library are those related to the construction and traversal of hierarchical grids accelerating the tracing of paths through heterogeneous fields in null-collision (maximum cross-section) algorithms. We show that with these hierarchical grids, the computing time is only weakly sensitivive to the refinement of the volumetric data. The library is tested with a rendering algorithm that produces synthetic images of cloud radiances. Two other examples are given as illustrations, that are respectively used to analyse the transmission of solar radiation under a cloud together with its sensitivity to an optical parameter, and to assess a parametrization of 3D radiative effects of clouds.Comment: Submitted to JAMES, revised and submitted again (this is v2

    Doctor of Philosophy

    Get PDF
    dissertationRadiation is the dominant mode of heat transfer in high temperature combustion environments. Radiative heat transfer affects the gas and particle phases, including all the associated combustion chemistry. The radiative properties are in turn affected by the turbulent flow field. This bi-directional coupling of radiation turbulence interactions poses a major challenge in creating parallel-capable, high-fidelity combustion simulations. In this work, a new model was developed in which reciprocal monte carlo radiation was coupled with a turbulent, large-eddy simulation combustion model. A technique wherein domain patches are stitched together was implemented to allow for scalable parallelism. The combustion model runs in parallel on a decomposed domain. The radiation model runs in parallel on a recomposed domain. The recomposed domain is stored on each processor after information sharing of the decomposed domain is handled via the message passing interface. Verification and validation testing of the new radiation model were favorable. Strong scaling analyses were performed on the Ember cluster and the Titan cluster for the CPU-radiation model and GPU-radiation model, respectively. The model demonstrated strong scaling to over 1,700 and 16,000 processing cores on Ember and Titan, respectively

    Tapering Enhanced Stimulated Superradiant Oscillator

    Full text link
    In this paper, we present a new kind of high power and high efficiency free-electron laser oscillator based on the application of the tapering enhanced stimulated superradiant amplification (TESSA) scheme. The main characteristic of the TESSA scheme is a high intensity seed pulse which provides high gradient beam deceleration and efficient energy extraction. In the oscillator configuration, the TESSA undulator is driven by a high repetition rate electron beam and embedded in an optical cavity. A beam-splitter is used for outcoupling a fraction of the amplified power and recirculate the remainder as the intense seed for the next electron beam pulse. The mirrors in the oscillator cavity refocus the seed at the undulator entrance and monochromatize the radiation. In this paper we discuss the optimization of the system for a technologically relevant example at 1 ÎĽ\mum using a 1~MHz repetition rate electron linac starting with an externally injected igniter pulse.Comment: 24 pages, 13 figure

    Cobalt-Porphyrin Catalyzed Electrochemical Reduction of Carbon Dioxide in Water II: Mechanism from First Principles

    Full text link
    We apply first principles computational techniques to analyze the two-electron, multi-step, electrochemical reduction of CO2 to CO in water using cobalt porphyrin as a catalyst. Density Functional Theory calculations with hybrid functionals and dielectric continuum solvation are used to determine the steps at which electrons are added. This information is corroborated with ab initio molecular dynamics simulations in an explicit aqueous environment which reveal the critical role of water in stabilizing a key intermediate formed by CO2 bound to cobalt. Using potential of mean force calculations, the intermediate is found to spontaneously accept a proton to form a carboxylate acid group at pH<9.0, and the subsequent cleavage of a C-OH bond to form CO is exothermic and associated with a small free energy barrier. These predictions suggest that the proposed reaction mechanism is viable if electron transfer to the catalyst is sufficiently fast. The variation in cobalt ion charge and spin states during bond breaking, DFT+U treatment of cobalt 3d orbitals, and the need for computing electrochemical potentials are emphasized.Comment: 33 pages, 7 figure
    • …
    corecore