1,006 research outputs found

    CT Image Segmentation Using FEM with Optimized Boundary Condition

    Get PDF
    The authors propose a CT image segmentation method using structural analysis that is useful for objects with structural dynamic characteristics. Motivation of our research is from the area of genetic activity. In order to reveal the roles of genes, it is necessary to create mutant mice and measure differences among them by scanning their skeletons with an X-ray CT scanner. The CT image needs to be manually segmented into pieces of the bones. It is a very time consuming to manually segment many mutant mouse models in order to reveal the roles of genes. It is desirable to make this segmentation procedure automatic. Although numerous papers in the past have proposed segmentation techniques, no general segmentation method for skeletons of living creatures has been established. Against this background, the authors propose a segmentation method based on the concept of destruction analogy. To realize this concept, structural analysis is performed using the finite element method (FEM), as structurally weak areas can be expected to break under conditions of stress. The contribution of the method is its novelty, as no studies have so far used structural analysis for image segmentation. The method's implementation involves three steps. First, finite elements are created directly from the pixels of a CT image, and then candidates are also selected in areas where segmentation is thought to be appropriate. The second step involves destruction analogy to find a single candidate with high strain chosen as the segmentation target. The boundary conditions for FEM are also set automatically. Then, destruction analogy is implemented by replacing pixels with high strain as background ones, and this process is iterated until object is decomposed into two parts. Here, CT image segmentation is demonstrated using various types of CT imagery

    Optimización en GPU de algoritmos para la mejora del realce y segmentación en imágenes hepáticas

    Get PDF
    This doctoral thesis deepens the GPU acceleration for liver enhancement and segmentation. With this motivation, detailed research is carried out here in a compendium of articles. The work developed is structured in three scientific contributions, the first one is based upon enhancement and tumor segmentation, the second one explores the vessel segmentation and the last is published on liver segmentation. These works are implemented on GPU with significant speedups with great scientific impact and relevance in this doctoral thesis The first work proposes cross-modality based contrast enhancement for tumor segmentation on GPU. To do this, it takes target and guidance images as an input and enhance the low quality target image by applying two dimensional histogram approach. Further it has been observed that the enhanced image provides more accurate tumor segmentation using GPU based dynamic seeded region growing. The second contribution is about fast parallel gradient based seeded region growing where static approach has been proposed and implemented on GPU for accurate vessel segmentation. The third contribution describes GPU acceleration of Chan-Vese model and cross-modality based contrast enhancement for liver segmentation

    Breast cancer mass detection in dce-mri using deep-learning features followed by discrimination of infiltrative vs. in situ carcinoma through a machine-learning approach

    Get PDF
    Breast cancer is the leading cause of cancer deaths worldwide in women. This aggressive tumor can be categorized into two main groups-in situ and infiltrative, with the latter being the most common malignant lesions. The current use of magnetic resonance imaging (MRI) was shown to provide the highest sensitivity in the detection and discrimination between benign vs. malignant lesions, when interpreted by expert radiologists. In this article, we present the prototype of a computer-aided detection/diagnosis (CAD) system that could provide valuable assistance to radiologists for discrimination between in situ and infiltrating tumors. The system consists of two main processing levels-(1) localization of possibly tumoral regions of interest (ROIs) through an iterative procedure based on intensity values (ROI Hunter), followed by a deep-feature extraction and classification method for false-positive rejection; and (2) characterization of the selected ROIs and discrimination between in situ and invasive tumor, consisting of Radiomics feature extraction and classification through a machine-learning algorithm. The CAD system was developed and evaluated using a DCE-MRI image database, containing at least one confirmed mass per image, as diagnosed by an expert radiologist. When evaluating the accuracy of the ROI Hunter procedure with respect to the radiologist-drawn boundaries, sensitivity to mass detection was found to be 75%. The AUC of the ROC curve for discrimination between in situ and infiltrative tumors was 0.70

    Reproducibility Study of Tumor Biomarkers Extracted from Positron Emission To-mography Images with 18F-Fluorodeoxyglucose

    Get PDF
    Introduction and aim Cancer is one of the main causes of death worldwide. Tumor diagnosis, staging, surveillance, prognosis and access to the response to therapy are critical when it comes to plan and analyze the optimal treatment strategies of cancer diseases. 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) imaging has provided some reliable prognostic factors in several cancer types, by extracting quantitative measures from the images obtained in clinics. The recent addition of digital equipment to the clinical armamentarium of PET leads to some concerns regarding inter-device data variability. Consequently, the reproducibility assess-ment of the tumor features, usually used in clinics and research, extracted from images acquired in an analog and new digital PET equipment is of paramount importance for use of multi-scanner studies in longitudinal patient’s studies. The aim of this study was to evaluate the inter-equipment reliability of a set of 25 lesional features commonly used in clinics and research. Material and methods In order to access the features agreement, a dual imaging protocol was designed. Whole-body 18F-FDG PET images from 53 oncological patients were acquired, after a single 18F-FDG injection, with two devices alternatively: Philips Vereos Digital PET/CT (VE-REOS with three different reconstruction protocols- digital) and Philips GEMINI TF-16 (GEM-INI with single standard reconstruction protocol- analog). A nuclear medicine physician identi-fied 283 18F-FDG avid lesions. Then, all lesions (both equipment) were automatically segmented based on a Bayesian classifier optimized to this study. In the total, 25 features (first order statistics and geometric features) were computed and compared. The intraclass correlation coefficient (ICC) was used as measure of agreement. Results A high agreement (ICC > 0.75) was obtained for most of the lesion features pulled out from both devices imaging data, for all (GEMINI vs VEREOS) reconstructions. The lesion fea-tures most frequently used, maximum standardized uptake value, metabolic tumor volume, and total lesion glycolysis reached maximum ICC of 0.90, 0.98 and 0.97, respectively. Conclusions Under controlled acquisition and reconstruction parameters, most of the features studied can be used for research and clinical work, whenever multiple scanner (e.g. VEREOS and GEMINI) studies, mainly during longitudinal patient evaluation, are used

    AN AUTOMATED DENTAL CARIES DETECTION AND SCORING SYSTEM FOR OPTIC IMAGES OF TOOTH OCCLUSAL SURFACE

    Get PDF
    Dental caries are one of the most prevalent chronic diseases. Worldwide 60 to 90 percent of school children and nearly 100 percent of adults experienced dental caries. The management of dental caries demands detection of carious lesions at early stages. The research of designing diagnostic tools in caries has been at peak for the last decade. This research aims to design an automated system to detect and score dental caries according to the International Caries Detection and Assessment System (ICDAS) guidelines using the optical images of the occlusal tooth surface. There have been numerous works that address the problem of caries detection by using new imaging technologies or advanced measurements. However, no such study has been done to detect and score caries with the use of optical images of the tooth surface. The aim of this dissertation is to develop image processing and machine learning algorithms to address the problem of detection and scoring the caries by the use of optical image of the tooth surface

    A New Computer-Aided Diagnosis System with Modified Genetic Feature Selection for BI-RADS Classification of Breast Masses in Mammograms

    Full text link
    Mammography remains the most prevalent imaging tool for early breast cancer screening. The language used to describe abnormalities in mammographic reports is based on the breast Imaging Reporting and Data System (BI-RADS). Assigning a correct BI-RADS category to each examined mammogram is a strenuous and challenging task for even experts. This paper proposes a new and effective computer-aided diagnosis (CAD) system to classify mammographic masses into four assessment categories in BI-RADS. The mass regions are first enhanced by means of histogram equalization and then semiautomatically segmented based on the region growing technique. A total of 130 handcrafted BI-RADS features are then extrcated from the shape, margin, and density of each mass, together with the mass size and the patient's age, as mentioned in BI-RADS mammography. Then, a modified feature selection method based on the genetic algorithm (GA) is proposed to select the most clinically significant BI-RADS features. Finally, a back-propagation neural network (BPN) is employed for classification, and its accuracy is used as the fitness in GA. A set of 500 mammogram images from the digital database of screening mammography (DDSM) is used for evaluation. Our system achieves classification accuracy, positive predictive value, negative predictive value, and Matthews correlation coefficient of 84.5%, 84.4%, 94.8%, and 79.3%, respectively. To our best knowledge, this is the best current result for BI-RADS classification of breast masses in mammography, which makes the proposed system promising to support radiologists for deciding proper patient management based on the automatically assigned BI-RADS categories

    Object-based 2D-to-3D video conversion for effective stereoscopic content generation in 3D-TV applications

    Get PDF
    Three-dimensional television (3D-TV) has gained increasing popularity in the broadcasting domain, as it enables enhanced viewing experiences in comparison to conventional two-dimensional (2D) TV. However, its application has been constrained due to the lack of essential contents, i.e., stereoscopic videos. To alleviate such content shortage, an economical and practical solution is to reuse the huge media resources that are available in monoscopic 2D and convert them to stereoscopic 3D. Although stereoscopic video can be generated from monoscopic sequences using depth measurements extracted from cues like focus blur, motion and size, the quality of the resulting video may be poor as such measurements are usually arbitrarily defined and appear inconsistent with the real scenes. To help solve this problem, a novel method for object-based stereoscopic video generation is proposed which features i) optical-flow based occlusion reasoning in determining depth ordinal, ii) object segmentation using improved region-growing from masks of determined depth layers, and iii) a hybrid depth estimation scheme using content-based matching (inside a small library of true stereo image pairs) and depth-ordinal based regularization. Comprehensive experiments have validated the effectiveness of our proposed 2D-to-3D conversion method in generating stereoscopic videos of consistent depth measurements for 3D-TV applications

    An artifacts removal post-processing for epiphyseal region-of-interest (EROI) localization in automated bone age assessment (BAA)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Segmentation is the most crucial part in the computer-aided bone age assessment. A well-known type of segmentation performed in the system is adaptive segmentation. While providing better result than global thresholding method, the adaptive segmentation produces a lot of unwanted noise that could affect the latter process of epiphysis extraction.</p> <p>Methods</p> <p>A proposed method with anisotropic diffusion as pre-processing and a novel Bounded Area Elimination (BAE) post-processing algorithm to improve the algorithm of ossification site localization technique are designed with the intent of improving the adaptive segmentation result and the region-of interest (ROI) localization accuracy.</p> <p>Results</p> <p>The results are then evaluated by quantitative analysis and qualitative analysis using texture feature evaluation. The result indicates that the image homogeneity after anisotropic diffusion has improved averagely on each age group for 17.59%. Results of experiments showed that the smoothness has been improved averagely 35% after BAE algorithm and the improvement of ROI localization has improved for averagely 8.19%. The MSSIM has improved averagely 10.49% after performing the BAE algorithm on the adaptive segmented hand radiograph.</p> <p>Conclusions</p> <p>The result indicated that hand radiographs which have undergone anisotropic diffusion have greatly reduced the noise in the segmented image and the result as well indicated that the BAE algorithm proposed is capable of removing the artifacts generated in adaptive segmentation.</p
    corecore