2,032 research outputs found

    Large Scale 3D Mapping of Indoor Environments Using a Handheld RGBD Camera

    Get PDF
    The goal of this research is to investigate the problem of reconstructing a 3D representation of an environment, of arbitrary size, using a handheld color and depth (RGBD) sensor. The focus of this dissertation is to examine four of the underlying subproblems to this system: camera tracking, loop closure, data storage, and integration. First, a system for 3D reconstruction of large indoor planar environments with data captured from an RGBD sensor mounted on a mobile robotic platform is presented. An algorithm for constructing nearly drift-free 3D occupancy grids of large indoor environments in an online manner is also presented. This approach combines data from an odometry sensor with output from a visual registration algorithm, and it enforces a Manhattan world constraint by utilizing factor graphs to produce an accurate online estimate of the trajectory of the mobile robotic platform. Through several experiments in environments with varying sizes and construction it is shown that this method reduces rotational and translational drift significantly without performing any loop closing techniques. In addition the advantages and limitations of an octree data structure representation of a 3D environment is examined. Second, the problem of sensor tracking, specifically the use of the KinectFusion algorithm to align two subsequent point clouds generated by an RGBD sensor, is studied. A method to overcome a significant limitation of the Iterative Closest Point (ICP) algorithm used in KinectFusion is proposed, namely, its sole reliance upon geometric information. The proposed method uses both geometric and color information in a direct manner that uses all the data in order to accurately estimate camera pose. Data association is performed by computing a warp between the two color images associated with two RGBD point clouds using the Lucas-Kanade algorithm. A subsequent step then estimates the transformation between the point clouds using either a point-to-point or point-to-plane error metric. Scenarios in which each of these metrics fails are described, and a normal covariance test for automatically selecting between them is proposed. Together, Lucas-Kanade data association (LKDA) along with covariance testing enables robust camera tracking through areas of low geometrical features, while at the same time retaining accuracy in environments in which the existing ICP technique succeeds. Experimental results on several publicly available datasets demonstrate the improved performance both qualitatively and quantitatively. Third, the choice of state space in the context of performing loop closure is revisited. Although a relative state space has been discounted by previous authors, it is shown that such a state space is actually extremely powerful, able to achieve recognizable results after just one iteration. The power behind the technique is that changing the orientation of one node is able to affect other nodes. At the same time, the approach --- which is referred to as Pose Optimization using a Relative State Space (POReSS) --- is fast because, like the more popular incremental state space, the Jacobian never needs to be explicitly computed. Furthermore, it is shown that while POReSS is able to quickly compute a solution near the global optimum, it is not precise enough to perform the fine adjustments necessary to achieve acceptable results. As a result, a method to augment POReSS with a fast variant of Gauss-Seidel --- which is referred to as Graph-Seidel --- on a global state space to allow the solution to settle closer to the global minimum is proposed. Through a set of experiments, it is shown that this combination of POReSS and Graph-Seidel is not only faster but achieves a lower residual than other non-linear algebra techniques. Moreover, unlike the linear algebra-based techniques, it is shown that this approach scales to very large graphs. In addition to revisiting the idea of using a relative state space, the benefits of only optimizing the rotational components of a trajectory in order to perform loop closing is examined (rPOReSS). Finally, an incremental implementation of the rotational optimization is proposed (irPOReSS)

    SEGCloud: Semantic Segmentation of 3D Point Clouds

    Full text link
    3D semantic scene labeling is fundamental to agents operating in the real world. In particular, labeling raw 3D point sets from sensors provides fine-grained semantics. Recent works leverage the capabilities of Neural Networks (NNs), but are limited to coarse voxel predictions and do not explicitly enforce global consistency. We present SEGCloud, an end-to-end framework to obtain 3D point-level segmentation that combines the advantages of NNs, trilinear interpolation(TI) and fully connected Conditional Random Fields (FC-CRF). Coarse voxel predictions from a 3D Fully Convolutional NN are transferred back to the raw 3D points via trilinear interpolation. Then the FC-CRF enforces global consistency and provides fine-grained semantics on the points. We implement the latter as a differentiable Recurrent NN to allow joint optimization. We evaluate the framework on two indoor and two outdoor 3D datasets (NYU V2, S3DIS, KITTI, Semantic3D.net), and show performance comparable or superior to the state-of-the-art on all datasets.Comment: Accepted as a spotlight at the International Conference of 3D Vision (3DV 2017

    FITTING A PARAMETRIC MODEL TO A CLOUD OF POINTS VIA OPTIMIZATION METHODS

    Get PDF
    Computer Aided Design (CAD) is a powerful tool for designing parametric geometry. However, many CAD models of current configurations are constructed in previous generations of CAD systems, which represent the configuration simply as a collection of surfaces instead of as a parametrized solid model. But since many modern analysis techniques take advantage of a parametrization, one often has to re-engineer the configuration into a parametric model. The objective here is to generate an efficient, robust, and accurate method for fitting parametric models to a cloud of points. The process uses a gradient-based optimization technique, which is applied to the whole cloud, without the need to segment or classify the points in the cloud a priori. First, for the points associated with any component, a variant of the Levenberg-Marquardt gradient-based optimization method (ILM) is used to find the set of model parameters that minimizes the least-square errors between the model and the points. The efficiency of the ILM algorithm is greatly improved through the use of analytic geometric sensitivities and sparse matrix techniques. Second, for cases in which one does not know a priori the correspondences between points in the cloud and the geometry model\u27s components, an efficient initialization and classification algorithm is introduced. While this technique works well once the configuration is close enough, it occasionally fails when the initial parametrized configuration is too far from the cloud of points. To circumvent this problem, the objective function is modified, which has yielded good results for all cases tested. This technique is applied to a series of increasingly complex configurations. The final configuration represents a full transport aircraft configuration, with a wing, fuselage, empennage, and engines. Although only applied to aerospace applications, the technique is general enough to be applicable in any domain for which basic parametrized models are available

    Calibrating Depth Sensors with a Genetic Algorithm

    Get PDF
    In this report, we deal with the optimization of the transformation estimate between the coordinate systems of depth sensors, \ie sensors that produce 3D measurements. For that, we present a novel method using a genetic algorithm to refine the six degrees of freedom (6 DoF) transformation via three rotational and three translational offsets. First, we demonstrate the necessity for an accurate depth sensor calibration using a depth error model of stereo cameras. The fusion of stereo disparity assumes a Gaussian disparity error distribution, which we examine with different stereo matching algorithms on the widely-used KITTI visual odometry dataset. Our analysis shows that the existing calibration is not adequate for accurate disparity fusion. As a consequence, we employ our genetic algorithm on this particular dataset, which results in a greatly improved calibration between the mounted stereo camera and the Lidar. Thus, stereo disparity estimates show improved results in quantitative evaluations

    Combining Features and Semantics for Low-level Computer Vision

    Get PDF
    Visual perception of depth and motion plays a significant role in understanding and navigating the environment. Reconstructing outdoor scenes in 3D and estimating the motion from video cameras are of utmost importance for applications like autonomous driving. The corresponding problems in computer vision have witnessed tremendous progress over the last decades, yet some aspects still remain challenging today. Striking examples are reflecting and textureless surfaces or large motions which cannot be easily recovered using traditional local methods. Further challenges include occlusions, large distortions and difficult lighting conditions. In this thesis, we propose to overcome these challenges by modeling non-local interactions leveraging semantics and contextual information. Firstly, for binocular stereo estimation, we propose to regularize over larger areas on the image using object-category specific disparity proposals which we sample using inverse graphics techniques based on a sparse disparity estimate and a semantic segmentation of the image. The disparity proposals encode the fact that objects of certain categories are not arbitrarily shaped but typically exhibit regular structures. We integrate them as non-local regularizer for the challenging object class 'car' into a superpixel-based graphical model and demonstrate its benefits especially in reflective regions. Secondly, for 3D reconstruction, we leverage the fact that the larger the reconstructed area, the more likely objects of similar type and shape will occur in the scene. This is particularly true for outdoor scenes where buildings and vehicles often suffer from missing texture or reflections, but share similarity in 3D shape. We take advantage of this shape similarity by localizing objects using detectors and jointly reconstructing them while learning a volumetric model of their shape. This allows to reduce noise while completing missing surfaces as objects of similar shape benefit from all observations for the respective category. Evaluations with respect to LIDAR ground-truth on a novel challenging suburban dataset show the advantages of modeling structural dependencies between objects. Finally, motivated by the success of deep learning techniques in matching problems, we present a method for learning context-aware features for solving optical flow using discrete optimization. Towards this goal, we present an efficient way of training a context network with a large receptive field size on top of a local network using dilated convolutions on patches. We perform feature matching by comparing each pixel in the reference image to every pixel in the target image, utilizing fast GPU matrix multiplication. The matching cost volume from the network's output forms the data term for discrete MAP inference in a pairwise Markov random field. Extensive evaluations reveal the importance of context for feature matching.Die visuelle Wahrnehmung von Tiefe und Bewegung spielt eine wichtige Rolle bei dem VerstĂ€ndnis und der Navigation in unserer Umwelt. Die 3D Rekonstruktion von Szenen im Freien und die SchĂ€tzung der Bewegung von Videokameras sind von grĂ¶ĂŸter Bedeutung fĂŒr Anwendungen, wie das autonome Fahren. Die Erforschung der entsprechenden Probleme des maschinellen Sehens hat in den letzten Jahrzehnten enorme Fortschritte gemacht, jedoch bleiben einige Aspekte heute noch ungelöst. Beispiele hierfĂŒr sind reflektierende und texturlose OberflĂ€chen oder große Bewegungen, bei denen herkömmliche lokale Methoden hĂ€ufig scheitern. Weitere Herausforderungen sind niedrige Bildraten, Verdeckungen, große Verzerrungen und schwierige LichtverhĂ€ltnisse. In dieser Arbeit schlagen wir vor nicht-lokale Interaktionen zu modellieren, die semantische und kontextbezogene Informationen nutzen, um diese Herausforderungen zu meistern. FĂŒr die binokulare Stereo SchĂ€tzung schlagen wir zuallererst vor zusammenhĂ€ngende Bereiche mit objektklassen-spezifischen DisparitĂ€ts VorschlĂ€gen zu regularisieren, die wir mit inversen Grafik Techniken auf der Grundlage einer spĂ€rlichen DisparitĂ€tsschĂ€tzung und semantischen Segmentierung des Bildes erhalten. Die DisparitĂ€ts VorschlĂ€ge kodieren die Tatsache, dass die GegenstĂ€nde bestimmter Kategorien nicht willkĂŒrlich geformt sind, sondern typischerweise regelmĂ€ĂŸige Strukturen aufweisen. Wir integrieren sie fĂŒr die komplexe Objektklasse 'Auto' in Form eines nicht-lokalen Regularisierungsterm in ein Superpixel-basiertes grafisches Modell und zeigen die Vorteile vor allem in reflektierenden Bereichen. Zweitens nutzen wir fĂŒr die 3D-Rekonstruktion die Tatsache, dass mit der GrĂ¶ĂŸe der rekonstruierten FlĂ€che auch die Wahrscheinlichkeit steigt, Objekte von Ă€hnlicher Art und Form in der Szene zu enthalten. Dies gilt besonders fĂŒr Szenen im Freien, in denen GebĂ€ude und Fahrzeuge oft vorkommen, die unter fehlender Textur oder Reflexionen leiden aber Ă€hnlichkeit in der Form aufweisen. Wir nutzen diese Ă€hnlichkeiten zur Lokalisierung von Objekten mit Detektoren und zur gemeinsamen Rekonstruktion indem ein volumetrisches Modell ihrer Form erlernt wird. Dies ermöglicht auftretendes Rauschen zu reduzieren, wĂ€hrend fehlende FlĂ€chen vervollstĂ€ndigt werden, da Objekte Ă€hnlicher Form von allen Beobachtungen der jeweiligen Kategorie profitieren. Die Evaluierung auf einem neuen, herausfordernden vorstĂ€dtischen Datensatz in Anbetracht von LIDAR-Entfernungsdaten zeigt die Vorteile der Modellierung von strukturellen AbhĂ€ngigkeiten zwischen Objekten. Zuletzt, motiviert durch den Erfolg von Deep Learning Techniken bei der Mustererkennung, prĂ€sentieren wir eine Methode zum Erlernen von kontextbezogenen Merkmalen zur Lösung des optischen Flusses mittels diskreter Optimierung. Dazu stellen wir eine effiziente Methode vor um zusĂ€tzlich zu einem Lokalen Netzwerk ein Kontext-Netzwerk zu erlernen, das mit Hilfe von erweiterter Faltung auf Patches ein großes rezeptives Feld besitzt. FĂŒr das Feature Matching vergleichen wir mit schnellen GPU-Matrixmultiplikation jedes Pixel im Referenzbild mit jedem Pixel im Zielbild. Das aus dem Netzwerk resultierende Matching Kostenvolumen bildet den Datenterm fĂŒr eine diskrete MAP Inferenz in einem paarweisen Markov Random Field. Eine umfangreiche Evaluierung zeigt die Relevanz des Kontextes fĂŒr das Feature Matching

    Sparse-to-Continuous: Enhancing Monocular Depth Estimation using Occupancy Maps

    Full text link
    This paper addresses the problem of single image depth estimation (SIDE), focusing on improving the quality of deep neural network predictions. In a supervised learning scenario, the quality of predictions is intrinsically related to the training labels, which guide the optimization process. For indoor scenes, structured-light-based depth sensors (e.g. Kinect) are able to provide dense, albeit short-range, depth maps. On the other hand, for outdoor scenes, LiDARs are considered the standard sensor, which comparatively provides much sparser measurements, especially in areas further away. Rather than modifying the neural network architecture to deal with sparse depth maps, this article introduces a novel densification method for depth maps, using the Hilbert Maps framework. A continuous occupancy map is produced based on 3D points from LiDAR scans, and the resulting reconstructed surface is projected into a 2D depth map with arbitrary resolution. Experiments conducted with various subsets of the KITTI dataset show a significant improvement produced by the proposed Sparse-to-Continuous technique, without the introduction of extra information into the training stage.Comment: Accepted. (c) 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other work
    • 

    corecore