102 research outputs found

    A Three-Step Methodology to Improve Domestic Energy Efficiency

    Get PDF
    Increasing energy prices and the greenhouse effect lead to more awareness of energy efficiency of electricity supply. During the last years, a lot of technologies have been developed to improve this efficiency. Next to large scale technologies such as windturbine parks, domestic technologies are developed. These domestic technologies can be divided in 1) Distributed Generation (DG), 2) Energy Storage and 3) Demand Side Load Management. Control algorithms optimizing a combination of these techniques can raise the energy reduction potential of the individual techniques. In this paper an overview of current research is given and a general concept is deducted. Based on this concept, a three-step optimization methodology is proposed using 1) offline local prediction, 2) offline global planning and 3) online local scheduling. The paper ends with results of simulations and field tests showing that the methodology is promising.\u

    Demand-Side Energy Management

    Get PDF

    Domestic energy efficiency improving algorithms

    Get PDF
    Due to increasing energy prices and the greenhouse effect more efficient electricity production is desirable, referably based on renewable sources. In the last years, a lot of technologies have been developed to improve the efficiency of the electricity usage and supply. Next to large scale technologies such as windturbine parks, a lot of domestic technologies are developed. These domestic technologies can be divided in 1) Distributed Generation (DG), 2) Energy Storage and 3) Demand Side Load Management. Control methodologies optimizing the combination of techniques raise the potential of the individual techniques. A lot of research in done in this area. This paper outlines a number of papers and deducts the general idea. Next, a three-step optimization methodology is proposed using 1) offline local prediction, 2) offline global planning and 3) online local scheduling. The paper ends with results of simulations and a field test verifying that methodology is promising

    Management and Control of Domestic Smart Grid Technology

    Get PDF
    Emerging new technologies like distributed generation, distributed storage, and demand-side load management will change the way we consume and produce energy. These techniques enable the possibility to reduce the greenhouse effect and improve grid stability by optimizing energy streams. By smartly applying future energy production, consumption, and storage techniques, a more energy-efficient electricity supply chain can be achieved. In this paper a three-step control methodology is proposed to manage the cooperation between these technologies, focused on domestic energy streams. In this approach, (global) objectives like peak shaving or forming a virtual power plant can be achieved without harming the comfort of residents. As shown in this work, using good predictions, in advance planning and real-time control of domestic appliances, a better matching of demand and supply can be achieved.\ud \u

    APPLICATIONS AND SUITABILITY OF RENEWABLE AND HYBRID POWER SYSTEMS FOR REMOTE DISTRIBUTED SPECIAL OPERATIONS AND U.S. MARINE CORPS EXPEDITIONARY FORCES IN CONTESTED ENVIRONMENTS

    Get PDF
    Expeditionary forces are overwhelmingly reliant on diesel generators to sustain mission-critical command, control, communications, computers, combat systems intelligence, surveillance, and reconnaissance (C5ISR) and life support systems on small- to medium-sized tactical power grids. This reliance presents significant logistics and maintenance challenges when employed in support of remote Special Operations Forces (SOF) and Marine Corps expeditionary operations in contested environments. The primary objective of the research is to measure the effectiveness of current or near-to-market energy storage and photovoltaic (PV) charging solutions to augment or replace diesel fuel power generators in support of expeditionary military operations. The secondary objective is to measure the impact of running these energy storage and charging solutions in tandem with diesel fuel generators on a unit’s fuel consumption, particularly the effect on existing fuel resupply schedules. This research concludes that existing and near-to-market renewable energy systems can effectively integrate with tactical diesel generators and produce enough energy to meet a substantial portion of the energy required in support of expeditionary operations in remote locations.Civilian, Department of the NavyCommander, United States NavyApproved for public release. Distribution is unlimited

    Systematic categorization of optimization strategies for virtual power plants

    Get PDF
    Due to the rapid growth in power consumption of domestic and industrial appliances, distributed energy generation units face difficulties in supplying power efficiently. The integration of distributed energy resources (DERs) and energy storage systems (ESSs) provides a solution to these problems using appropriate management schemes to achieve optimal operation. Furthermore, to lessen the uncertainties of distributed energy management systems, a decentralized energy management system named virtual power plant (VPP) plays a significant role. This paper presents a comprehensive review of 65 existing different VPP optimization models, techniques, and algorithms based on their system configuration, parameters, and control schemes. Moreover, the paper categorizes the discussed optimization techniques into seven different types, namely conventional technique, offering model, intelligent technique, price-based unit commitment (PBUC) model, optimal bidding, stochastic technique, and linear programming, to underline the commercial and technical efficacy of VPP at day-ahead scheduling at the electricity market. The uncertainties of market prices, load demand, and power distribution in the VPP system are mentioned and analyzed to maximize the system profits with minimum cost. The outcome of the systematic categorization is believed to be a base for future endeavors in the field of VPP development

    Reviewing energy system modelling of decentralized energy autonomy

    Get PDF
    Research attention on decentralized autonomous energy systems has increased exponentially in the past three decades, as demonstrated by the absolute number of publications and the share of these studies in the corpus of energy system modelling literature. This paper shows the status quo and future modelling needs for research on local autonomous energy systems. A total of 359 studies are roughly investigated, of which a subset of 123 in detail. The studies are assessed with respect to the characteristics of their methodology and applications, in order to derive common trends and insights. Most case studies apply to middle-income countries and only focus on the supply of electricity in the residential sector. Furthermore, many of the studies are comparable regarding objectives and applied methods. Local energy autonomy is associated with high costs, leading to levelized costs of electricity of 0.41 $/kWh on average. By analysing the studies, many improvements for future studies could be identified: the studies lack an analysis of the impact of autonomous energy systems on surrounding energy systems. In addition, the robust design of autonomous energy systems requires higher time resolutions and extreme conditions. Future research should also develop methodologies to consider local stakeholders and their preferences for energy systems

    A Comprehensive Method For Coordinating Distributed Energy Resources In A Power Distribution System

    Get PDF
    Utilities, faced with increasingly limited resources, strive to maintain high levels of reliability in energy delivery by adopting improved methodologies in planning, operation, construction and maintenance. On the other hand, driven by steady research and development and increase in sales volume, the cost of deploying PV systems has been in constant decline since their first introduction to the market. The increased level of penetration of distributed energy resources in power distribution infrastructure presents various benefits such as loss reduction, resilience against cascading failures and access to more diversified resources. However, serious challenges and risks must be addressed to ensure continuity and reliability of service. By integrating necessary communication and control infrastructure into the distribution system, to develop a practically coordinated system of distributed resources, controllable load/generation centers will be developed which provide substantial flexibility for the operation of the distribution system. On the other hand, such a complex distributed system is prone to instability and black outs due to lack of a major infinite supply and other unpredicted variations in load and generation, which must be addressed. To devise a comprehensive method for coordination between Distributed Energy Resources in order to achieve a collective goal, is the key point to provide a fully functional and reliable power distribution system incorporating distributed energy resources. A road map to develop such comprehensive coordination system is explained and supporting scenarios and their associated simulation results are then elaborated. The proposed road map describes necessary steps to build a comprehensive solution for coordination between multiple agents in a microgrid or distribution feeder.\u2
    corecore