6,623 research outputs found

    Doctor of Philosophy

    Get PDF
    dissertationSparse matrix codes are found in numerous applications ranging from iterative numerical solvers to graph analytics. Achieving high performance on these codes has however been a significant challenge, mainly due to array access indirection, for example, of the form A[B[i]]. Indirect accesses make precise dependence analysis impossible at compile-time, and hence prevent many parallelizing and locality optimizing transformations from being applied. The expert user relies on manually written libraries to tailor the sparse code and data representations best suited to the target architecture from a general sparse matrix representation. However libraries have limited composability, address very specific optimization strategies, and have to be rewritten as new architectures emerge. In this dissertation, we explore the use of the inspector/executor methodology to accomplish the code and data transformations to tailor high performance sparse matrix representations. We devise and embed abstractions for such inspector/executor transformations within a compiler framework so that they can be composed with a rich set of existing polyhedral compiler transformations to derive complex transformation sequences for high performance. We demonstrate the automatic generation of inspector/executor code, which orchestrates code and data transformations to derive high performance representations for the Sparse Matrix Vector Multiply kernel in particular. We also show how the same transformations may be integrated into sparse matrix and graph applications such as Sparse Matrix Matrix Multiply and Stochastic Gradient Descent, respectively. The specific constraints of these applications, such as problem size and dependence structure, necessitate unique sparse matrix representations that can be realized using our transformations. Computations such as Gauss Seidel, with loop carried dependences at the outer most loop necessitate different strategies for high performance. Specifically, we organize the computation into level sets or wavefronts of irregular size, such that iterations of a wavefront may be scheduled in parallel but different wavefronts have to be synchronized. We demonstrate automatic code generation of high performance inspectors that do explicit dependence testing and level set construction at runtime, as well as high performance executors, which are the actual parallelized computations. For the above sparse matrix applications, we automatically generate inspector/executor code comparable in performance to manually tuned libraries

    Prospecting environmental mycobacteria: combined molecular approaches reveal unprecedented diversity

    Get PDF
    Background: Environmental mycobacteria (EM) include species commonly found in various terrestrial and aquatic environments, encompassing animal and human pathogens in addition to saprophytes. Approximately 150 EM species can be separated into fast and slow growers based on sequence and copy number differences of their 16S rRNA genes. Cultivation methods are not appropriate for diversity studies; few studies have investigated EM diversity in soil despite their importance as potential reservoirs of pathogens and their hypothesized role in masking or blocking M. bovis BCG vaccine. Methods: We report here the development, optimization and validation of molecular assays targeting the 16S rRNA gene to assess diversity and prevalence of fast and slow growing EM in representative soils from semi tropical and temperate areas. New primer sets were designed also to target uniquely slow growing mycobacteria and used with PCR-DGGE, tag-encoded Titanium amplicon pyrosequencing and quantitative PCR. Results: PCR-DGGE and pyrosequencing provided a consensus of EM diversity; for example, a high abundance of pyrosequencing reads and DGGE bands corresponded to M. moriokaense, M. colombiense and M. riyadhense. As expected pyrosequencing provided more comprehensive information; additional prevalent species included M. chlorophenolicum, M. neglectum, M. gordonae, M. aemonae. Prevalence of the total Mycobacterium genus in the soil samples ranged from 2.3×107 to 2.7×108 gene targets g−1; slow growers prevalence from 2.9×105 to 1.2×107 cells g−1. Conclusions: This combined molecular approach enabled an unprecedented qualitative and quantitative assessment of EM across soil samples. Good concordance was found between methods and the bioinformatics analysis was validated by random resampling. Sequences from most pathogenic groups associated with slow growth were identified in extenso in all soils tested with a specific assay, allowing to unmask them from the Mycobacterium whole genus, in which, as minority members, they would have remained undetected

    EFFECTS OF HYDROLOGIC VARIATIONS ON HYDRAULIC AND DEFORMATIONAL CHARACTERISTICS OF UNSATURATED SOILS

    Get PDF
    Constitutive models that can provide useful insight into the deformational mechanism induced by hydrologic variations are vital for design and analysis of structures where unsaturated regime predominates. An accurate description of unsaturated soils’ behavior not only requires a vigorous constitutive model, but essentially is achievable using real-time mechanical (e.g. small-strain shear modulus) and hydrologic data sets. The main objective of this research was to develop a robust constitutive scheme that is compatible to quick fluctuations in hydrologic conditions. The first step towards accomplishing this aim involved proposing a novel methodology to estimate the small-strain shear modules with respect to the variations in net normal stress and matric suction. Fundamental of the proposed scheme was established on the inverse relationship between the small-strain shear modulus and soil-water characteristic curve (SWCC). The model proved to be highly reliable in estimating real-time values of the small-strain shear modulus along several loading and hydrologic scenarios. Furthermore, a dependable and robust constitutive scheme, identified as SFG model was selected and further modified to simulate hydraulic characteristics and elastoplastic deformations of the unsaturated soils as direct responses to isotropic/triaxial loads and hydrological variations. The modifications involved reformation of hysteresis and elastic shear strain components of the original model. The modified-SFG model was fitted against several case studies representing various hydrologic conditions. The model successfully reproduced hydro-mechanical characteristics of the studied soils. More significantly, the modified-SFG model offers possibility of a real-time simulating of hydro-mechanical behavior of unsaturated soils with respect to rainfall and evapotranspiration events. Likewise, in this dissertation, long-term hydrologic variations within the soil’s body was simulated under transient infiltration framework. Correlation between various parts of hydrologic data was used to estimate different components of hydrological dataset. The transient infiltration model was subsequently coupled with the modified-SFG scheme and hydro-mechanical behaviors of an unsaturated hillslope was incrementally simulated with respect to hydrologic variations. The outcome of this study provides geotechnical engineers with a capability of estimating the deformational behavior of unsaturated soils, particularly stability of hillslopes, under various real-time rainfall and evapotranspiration conditions, and thus aids effectual risk assessments and construction managements

    Suitability of Intelligent Compaction for Relatively Smaller-Scale Projects in Vermont

    Get PDF
    Intelligent Compaction (IC) is considered to be an innovative technology intended to address some of the problems associated with conventional compaction methods of earthwork (e.g. stiffness-based measurements instead of density-based measurements). IC typically refers to an improved compaction process using rollers equipped with an integrated measurement system that consists of a global positioning system (GPS), accelerometers, onboard computer reporting system, and infrared thermometers IC determines the compacted material’s stiffness/modulus simultaneously while compacting based on measured frequency and amplitude of excitation. The overarching objective of this research was to investigate the suitability of IC technology for comparatively smaller-scale embankment, subgrade, and base material construction that are typical for Vermont. The specific objectives were to: perform a literature review of IC technology; assess the accuracy and reliability of IC measured values (e.g. stiffness); investigate the influence of relevant parameters (i.e. density, soil type, moisture content, etc.) on these measurements; investigate different options for quality control (QC) and quality assurance (QA) specifications for IC; and make specific recommendations to the Agency. The literature review suggests that: (i) IC stiffness measurements near the surface are less reliable compared to deeper measurements; (ii) correlations between IC measured stiffness and modulus of spottest measurements vary considerably in layer and layered soil structures; and (iii) for asphalt, IC measured stiffness correlates well with nuclear density gauge measurements, only when the asphalt mix is hot. In addition, the existing quality control (QC) and quality assurance (QA) specifications for implementing IC need further improvements. It is suggested that to better investigate the reliability of implementing IC for both earthwork construction and asphalt pavement in Vermont’s harsh winter conditions, it would be necessary to conduct field experiments. In addition, preparing a new set of QC/QA specifications is an important step toward implementation of IC in Vermont projects, which can be accomplished in collaboration with other states and as some local experience in IC is gained. Also, it is recommended to evaluate the correlation between IC stiffness measurements and in-situ stiffness measurements in different seasons in Vermont

    Large Genomes Assembly Using MAPREDUCE Framework

    Get PDF
    Knowing the genome sequence of an organism is the essential step toward understanding its genomic and genetic characteristics. Currently, whole genome shotgun (WGS) sequencing is the most widely used genome sequencing technique to determine the entire DNA sequence of an organism. Recent advances in next-generation sequencing (NGS) techniques have enabled biologists to generate large DNA sequences in a high-throughput and low-cost way. However, the assembly of NGS reads faces significant challenges due to short reads and an enormously high volume of data. Despite recent progress in genome assembly, current NGS assemblers cannot generate high-quality results or efficiently handle large genomes with billions of reads. In this research, we proposed a new Genome Assembler based on MapReduce (GAMR), which tackles both limitations. GAMR is based on a bi-directed de Bruijn graph and implemented using the MapReduce framework. We designed a distributed algorithm for each step in GAMR, making it scalable in assembling large-scale genomes. We also proposed novel gap-filling algorithms to improve assembly results to achieve higher accuracy and more extended continuity. We evaluated the assembly performance of GAMR using benchmark data and compared it against other NGS assemblers. We also demonstrated the scalability of GAMR by using it to assemble loblolly pine (~22Gbp). The results showed that GAMR finished the assembly much faster and with a much lower requirement of computing resources

    Development of the engineering design integration (EDIN) system: A computer aided design development

    Get PDF
    The EDIN (Engineering Design Integration) System which provides a collection of hardware and software, enabling the engineer to perform man-in-the-loop interactive evaluation of aerospace vehicle concepts, was considered. Study efforts were concentrated in the following areas: (1) integration of hardware with the Univac Exec 8 System; (2) development of interactive software for the EDIN System; (3) upgrading of the EDIN technology module library to an interactive status; (4) verification of the soundness of the developing EDIN System; (5) support of NASA in design analysis studies using the EDIN System; (6) provide training and documentation in the use of the EDIN System; and (7) provide an implementation plan for the next phase of development and recommendations for meeting long range objectives
    corecore