206 research outputs found

    Analysis of Human Push Recovery Motions Based on Optimization

    Get PDF
    The ability to cope with large perturbations is essential to avoid falling for humans as well as for humanoid robots. Every day millions of people are affected by injuries due to falling. This is a huge problem not only for the individuum but also for the society as it costs the health care systems billions of euros. Also in the field of humanoid robots fall avoidance is very important as it protects robots against breakage. In this thesis, the problem of fall avoidance is addressed using a combination of optimization, human-modeling and recorded push recovery motions. The aim is to identify the principles that lead to human-like push recovery motions. The human is modeled by rigid segments combined by joints leading to an underactuated multi-body representation. These models are included in multiple stage optimal control problems to reconstruct and sythesize human push recovery motions considering the dynamics of a human over the whole time horizon. Due to the high nonlinearity, the optimization problem is solved based on a direct multiple shooting method. To analyze the human push recovery motions, dynamically-consistent motions for the model that closely track experimental data are produced. The joint angles and joint torques for the human model controlled by joint torque derivatives are compared for perturbed and unperturbed motions from two subjects. The results verify the assumption that the heavier the perturbation is and the higher it is applied at the upper body, the larger are the resulting joint torques. We show that including optimally chosen spring-damper elements in the joints can reduce the active joint torques significantly. We further exploit our motion reconstruction approach to determine the states that are most affected during a perturbation. Relevant parameters such as the orientation and position of the head and body, joint angles and torques of the perturbed motions are analyzed for deviations to the unperturbed motions at the point in time when the push occurs. Identifying the point in time when the model states of the perturbed motions differ from the unperturbed motions, the reaction times are determined. To better understand human push recovery motions, we also investigate in a motion sythesis approach. This approach enables a control hypothesis, in the form of a specific objective function, to be formed. The minimization of effort combined with a periodicity formulation results in human-like motions and the influence of the push strength is analyzed. Formulating the objective function as a weighted linear combination of possible optimality criteria provides the possibility to analyze different optimality criteria and their resulting motion. The difficulty is, that for a given motion, it is not known, which criteria lead to that specific motion. In this thesis, the results for different basal objective functions are analyzed. These studies prepare to determine the optimal weights of the criteria by including the presented motion generation formulation in an inverse optimal control problem. Having analyzed general weights that lead to a good approximation of the human recovery motions, the resulting objective function can be used to generate push recovery motions also for humanoid robots or assistive devices such as exoskeletons. To show another application in the improvement of technical assistive devices, we include two combined human exoskeleton models of different weights in our calculations. This allows us to analyze the joint torques for these models including the exoskeletons and compare the results to a human model. As the resulting joint torques are quite large, we also formulate combined human exoskeleton models with passive spring-damper elements that act in parallel to the active torques. This compliant formulation leads to a significant reduction of the active joint torque needed for the recovery motion. The reduction of the active joint torques allows the reduction of energy needed for the recovery motion or can enable the recovery from stronger perturbations

    Feedback Control of an Exoskeleton for Paraplegics: Toward Robustly Stable Hands-free Dynamic Walking

    Get PDF
    This manuscript presents control of a high-DOF fully actuated lower-limb exoskeleton for paraplegic individuals. The key novelty is the ability for the user to walk without the use of crutches or other external means of stabilization. We harness the power of modern optimization techniques and supervised machine learning to develop a smooth feedback control policy that provides robust velocity regulation and perturbation rejection. Preliminary evaluation of the stability and robustness of the proposed approach is demonstrated through the Gazebo simulation environment. In addition, preliminary experimental results with (complete) paraplegic individuals are included for the previous version of the controller.Comment: Submitted to IEEE Control System Magazine. This version addresses reviewers' concerns about the robustness of the algorithm and the motivation for using such exoskeleton

    Knee Exoskeletons Design Approaches to Boost Strength Capability: A Review

    Get PDF
    Exoesqueleto para incrementar la fuerza en las rodillasThere are different devices to increase the strength capacity of people with walking problems. These devices can be classified into exoskeletons, orthotics, and braces. This review aims to identify the state of the art in the design of these medical devices, based on an analysis of patents and literature. However, there are some difficulties in processing the records due to the lack of filters and standardization in the names, generating discrepancies between the search engines, among others. Concerning the patents, 74 patents were analyzed using search engines such as Google Patents, Derwent, The Lens, Patentscope, and Espacenet over the past ten years. A bibliometric analysis was performed using 63 scientific reports from Web of Science and The Lens in the same period for scientific communications. The results show a trend to use the mechanical design of exoskeletons based on articulated rigid structures and elements that provide force to move the structure. These are generally two types: (a) elastic elements and (b) electromechanical elements. The United States accounts for 32% of the technological patents reviewed. The results suggest that the use of exoskeletons or orthoses customized to the users’ needs will continue to increase over the years due to the worldwide growth in disability, particularly related to mobility difficulties and technologies related to the combined use of springs and actuators

    Stability of Mina v2 for Robot-Assisted Balance and Locomotion

    Get PDF
    The assessment of the risk of falling during robot-assisted locomotion is critical for gait control and operator safety, but has not yet been addressed through a systematic and quantitative approach. In this study, the balance stability of Mina v2, a recently developed powered lower-limb robotic exoskeleton, is evaluated using an algorithmic framework based on center of mass (COM)- and joint-space dynamics. The equivalent mechanical model of the combined human-exoskeleton system in the sagittal plane is established and used for balance stability analysis. The properties of the Linear Linkage Actuator, which is custom-designed for Mina v2, are analyzed to obtain mathematical models of torque-velocity limits, and are implemented as constraint functions in the optimization formulation. For given feet configurations of the robotic exoskeleton during flat ground walking, the algorithm evaluates the maximum allowable COM velocity perturbations along the fore-aft directions at each COM position of the system. The resulting velocity extrema form the contact-specific balance stability boundaries (BSBs) of the combined system in the COM state space, which represent the thresholds between balanced and unbalanced states for given contact configurations. The BSBs are obtained for the operation of Mina v2 without crutches, thus quantifying Mina v2's capability of maintaining balance through the support of the leg(s). Stability boundaries in single and double leg supports are used to analyze the robot's stability performance during flat ground walking experiments, and provide design and control implications for future development of crutch-less robotic exoskeletons
    corecore