17 research outputs found

    An ALE method for penetration into sand utilizing optimization-based mesh motion

    Get PDF
    The numerical simulation of penetration into sand is one of the most challenging problems in computational geomechanics. The paper presents an arbitrary Lagrangian–Eulerian (ALE) finite element method for plane and axisymmetric quasi-static penetration into sand which overcomes the problems associated with the classical approaches. An operator-split is applied which breaks up solution of the governing equations over a time step into a Lagrangian step, a mesh motion step, and a transport step. A unique feature of the ALE method is an advanced hypoplastic rate constitutive equation to realistically predict stress and density changes within the material even at large deformations. In addition, an efficient optimization-based algorithm has been implemented to smooth out the non-convexly distorted mesh regions that occur below a penetrator. Applications to shallow penetration and pile penetration are given which make use of the developments.DFG, FOR 1136, Modellierung von geotechnischen Herstellungsvorgängen mit ganzheitlicher Erfassung des Spannungs-Verformungs-Verhaltens im Boden (GeoTech

    High-Resolution Mathematical and Numerical Analysis of Involution-Constrained PDEs

    Get PDF
    Partial differential equations constrained by involutions provide the highest fidelity mathematical models for a large number of complex physical systems of fundamental interest in critical scientific and technological disciplines. The applications described by these models include electromagnetics, continuum dynamics of solid media, and general relativity. This workshop brought together pure and applied mathematicians to discuss current research that cuts across these various disciplines’ boundaries. The presented material illuminated fundamental issues as well as evolving theoretical and algorithmic approaches for PDEs with involutions. The scope of the material covered was broad, and the discussions conducted during the workshop were lively and far-reaching

    An Arbitrary Lagrangian-Eulerian strategy to solve compressible fluid flows

    Get PDF
    In this paper, we consider an Arbitrary Lagrangian Eulerian (ALE) alternative to the computation of bi-dimensional compressible fluid dynamics written in Lagrangian frame. In this formulation, the conservation laws are solved on a mesh moving at the speed of the flow. In the context of multi-material flows, this Lagrangian description allows the exact preservation of the interface between different species. Originally, Lagrangian schemes considered a staggered discretization of unknowns (density, velocity, energy), the velocity is located at nodes and density, pressure are cell centered. Recently, new schemes have been designed as a full centered version . These two schemes can be seen as an extension of Godunov scheme to fully multi-dimensional flux (at nodes). Each one verifies a local discrete vertex centered entropy inequality. Despite all efforts to obtain robust simulations for Inertial Confinement Fusion (ICF) computations, nowadays, the pure Lagrangian frame mode does not ensure a good cell quality during the calculation: for example non convex cell and/or tangled cell may appear. A commonly used alternative is to consider an ALE formulation. A pure Lagrangian phase is followed by a two step process: the rezoning of the Lagrangian mesh followed by a remapping step. The aim of this paper is to propose some schemes for each step. In the first one, we will introduce a strategy that controls the quality of the rezoned mesh for arbitrary polygonal conformal mesh under the constraint of being close to the Lagrangian grid. For the second one, we propose an extension of swept volume based remapping method. We propose also a local way to impose a discrete maximum principle (local bound preservation) for arbitrary second order limiter (or high order method) without any repair process

    Interface Tracking and Solid-Fluid Coupling Techniques with Coastal Engineering Applications

    No full text
    Multi-material physics arise in an innumerable amount of engineering problems. A broadly scoped numerical model is developed and described in this thesis to simulate the dynamic interaction of multi-fluid and solid systems. It is particularly aimed at modelling the interaction of two immiscible fluids with solid structures in a coastal engineering context; however it can be extended to other similar areas of research. The Navier Stokes equations governing the fluids are solved using a combination of finite element (FEM) and control volume finite element (CVFE) discretisations. The sharp interface between the fluids is obtained through the compressive transport of material properties (e.g. material concentration). This behaviour is achieved through the CVFE method and a conveniently limited flux calculation scheme based on the Hyper-C method by Leonard (1991). Analytical and validation test cases are provided, consisting of steady and unsteady flows. To further enhance the method, improve accuracy, and exploit Lagrangian benefits, a novel moving mesh method is also introduced and tested. It is essentially an Arbitrary Lagrangian Eulerian method in which the grid velocity is defined by semi-explicitly solving an iterative functional minimisation problem. A multi-phase approach is used to introduce solid structure modelling. In this approach, solution of the velocity field for the fluid phase is obtained using Model B as explained by Gidaspow (1994, page 151). Interaction between the fluid phase and the solids is achieved through the means of a source term included in the fluid momentum equations. The interacting force is calculated through integration of this source term and adding a buoyancy contribution. The resulting force is passed to an external solid-dynamics model such as the Discrete Element Method (DEM), or the combined Finite Discrete Element Method (FEMDEM). The versatility and novelty of this combined modelling approach stems from its ability to capture the fluid interaction with particles of random size and shape. Each of the three main components of this thesis: the advection scheme, the moving mesh method, and the solid interaction are individually validated, and examples of randomly shaped and sized particles are shown. To conclude the work, the methods are combined together in the context of coastal engineering applications, where the complex coupled problem of waves impacting on breakwater amour units is chosen to demonstrate the simulation possibilities. The three components developed in this thesis significantly extend the application range of already powerful tools, such as Fluidity, for fluids-modelling and finite discrete element solids-modelling tools by bringing them together for the first time

    An anisotropic mesh adaptation method for the finite element solution of heterogeneous anisotropic diffusion problems

    Full text link
    Heterogeneous anisotropic diffusion problems arise in the various areas of science and engineering including plasma physics, petroleum engineering, and image processing. Standard numerical methods can produce spurious oscillations when they are used to solve those problems. A common approach to avoid this difficulty is to design a proper numerical scheme and/or a proper mesh so that the numerical solution validates the discrete counterpart (DMP) of the maximum principle satisfied by the continuous solution. A well known mesh condition for the DMP satisfaction by the linear finite element solution of isotropic diffusion problems is the non-obtuse angle condition that requires the dihedral angles of mesh elements to be non-obtuse. In this paper, a generalization of the condition, the so-called anisotropic non-obtuse angle condition, is developed for the finite element solution of heterogeneous anisotropic diffusion problems. The new condition is essentially the same as the existing one except that the dihedral angles are now measured in a metric depending on the diffusion matrix of the underlying problem. Several variants of the new condition are obtained. Based on one of them, two metric tensors for use in anisotropic mesh generation are developed to account for DMP satisfaction and the combination of DMP satisfaction and mesh adaptivity. Numerical examples are given to demonstrate the features of the linear finite element method for anisotropic meshes generated with the metric tensors.Comment: 34 page

    Toward a Simple, Accurate Lagrangian Hydrocode.

    Full text link
    Lagrangian hydrocodes play an important role in the computation of transient, compressible, multi-material flows. This research was aimed at developing a simply constructed cell-centered Lagrangian method for the Euler equations that respects multidimensional physics while achieving second-order accuracy. Algorithms that can account for the multidimensional physics associated with acoustic wave propagation and vorticity transport are needed in order to increase accuracy and prevent mesh imprinting. Many of the building blocks of traditional finite volume schemes, such as Riemann solvers and spatial gradient limiters, have their foundations in one-dimensional ideas and so were not used here. Instead, multidimensional point estimates of the fluxes were computed with a Lax-Wendroff type procedure and then nonlinearly modified using a temporal flux limiting mechanism. The linear acoustic equations were used as a simplified test environment for the Lagrangian Euler system. Here Lax-Wendroff methods that exactly preserve vorticity were investigated and found to resist mesh imprinting. However, the dispersion properties of the schemes were poor and so third-order accurate vorticity preserving methods were developed to remedy the problem. The third-order methods guided the construction of a temporal limiting mechanism, which was then used in a vorticity preserving flux-corrected transport scheme. While the acoustic work was interesting in its own right, it also proved to be a useful stepping stone to Lagrangian hydrodynamics. The acoustics algorithms were extended to produce the Simple Lagrangian Method (SLaM). Standard test problems have shown that a first-order accurate version of the method is able to resist mesh imprinting and spurious vorticity despite its minimalistic structure. SLaM is capable of second-order accuracy with a simple parameter change and some preliminary work was done to extend the temporal flux limiting ideas from acoustics to the Lagrangian case. The limited SLaM method converges at second-order for smooth data and is able to capture shocks without producing large unphysical oscillations.PhDAerospace EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/113577/1/tblung_1.pd

    Grid generation for the solution of partial differential equations

    Get PDF
    A general survey of grid generators is presented with a concern for understanding why grids are necessary, how they are applied, and how they are generated. After an examination of the need for meshes, the overall applications setting is established with a categorization of the various connectivity patterns. This is split between structured grids and unstructured meshes. Altogether, the categorization establishes the foundation upon which grid generation techniques are developed. The two primary categories are algebraic techniques and partial differential equation techniques. These are each split into basic parts, and accordingly are individually examined in some detail. In the process, the interrelations between the various parts are accented. From the established background in the primary techniques, consideration is shifted to the topic of interactive grid generation and then to adaptive meshes. The setting for adaptivity is established with a suitable means to monitor severe solution behavior. Adaptive grids are considered first and are followed by adaptive triangular meshes. Then the consideration shifts to the temporal coupling between grid generators and PDE-solvers. To conclude, a reflection upon the discussion, herein, is given
    corecore