1,545 research outputs found

    Second-order Shape Optimization for Geometric Inverse Problems in Vision

    Full text link
    We develop a method for optimization in shape spaces, i.e., sets of surfaces modulo re-parametrization. Unlike previously proposed gradient flows, we achieve superlinear convergence rates through a subtle approximation of the shape Hessian, which is generally hard to compute and suffers from a series of degeneracies. Our analysis highlights the role of mean curvature motion in comparison with first-order schemes: instead of surface area, our approach penalizes deformation, either by its Dirichlet energy or total variation. Latter regularizer sparks the development of an alternating direction method of multipliers on triangular meshes. Therein, a conjugate-gradients solver enables us to bypass formation of the Gaussian normal equations appearing in the course of the overall optimization. We combine all of the aforementioned ideas in a versatile geometric variation-regularized Levenberg-Marquardt-type method applicable to a variety of shape functionals, depending on intrinsic properties of the surface such as normal field and curvature as well as its embedding into space. Promising experimental results are reported

    Cavlectometry: Towards Holistic Reconstruction of Large Mirror Objects

    Full text link
    We introduce a method based on the deflectometry principle for the reconstruction of specular objects exhibiting significant size and geometric complexity. A key feature of our approach is the deployment of an Automatic Virtual Environment (CAVE) as pattern generator. To unfold the full power of this extraordinary experimental setup, an optical encoding scheme is developed which accounts for the distinctive topology of the CAVE. Furthermore, we devise an algorithm for detecting the object of interest in raw deflectometric images. The segmented foreground is used for single-view reconstruction, the background for estimation of the camera pose, necessary for calibrating the sensor system. Experiments suggest a significant gain of coverage in single measurements compared to previous methods. To facilitate research on specular surface reconstruction, we will make our data set publicly available

    Geometric Structure Extraction and Reconstruction

    Get PDF
    Geometric structure extraction and reconstruction is a long-standing problem in research communities including computer graphics, computer vision, and machine learning. Within different communities, it can be interpreted as different subproblems such as skeleton extraction from the point cloud, surface reconstruction from multi-view images, or manifold learning from high dimensional data. All these subproblems are building blocks of many modern applications, such as scene reconstruction for AR/VR, object recognition for robotic vision and structural analysis for big data. Despite its importance, the extraction and reconstruction of a geometric structure from real-world data are ill-posed, where the main challenges lie in the incompleteness, noise, and inconsistency of the raw input data. To address these challenges, three studies are conducted in this thesis: i) a new point set representation for shape completion, ii) a structure-aware data consolidation method, and iii) a data-driven deep learning technique for multi-view consistency. In addition to theoretical contributions, the algorithms we proposed significantly improve the performance of several state-of-the-art geometric structure extraction and reconstruction approaches, validated by extensive experimental results

    Computational Imaging for Shape Understanding

    Get PDF
    Geometry is the essential property of real-world scenes. Understanding the shape of the object is critical to many computer vision applications. In this dissertation, we explore using computational imaging approaches to recover the geometry of real-world scenes. Computational imaging is an emerging technique that uses the co-designs of image hardware and computational software to expand the capacity of traditional cameras. To tackle face recognition in the uncontrolled environment, we study 2D color image and 3D shape to deal with body movement and self-occlusion. Especially, we use multiple RGB-D cameras to fuse the varying pose and register the front face in a unified coordinate system. The deep color feature and geodesic distance feature have been used to complete face recognition. To handle the underwater image application, we study the angular-spatial encoding and polarization state encoding of light rays using computational imaging devices. Specifically, we use the light field camera to tackle the challenging problem of underwater 3D reconstruction. We leverage the angular sampling of the light field for robust depth estimation. We also develop a fast ray marching algorithm to improve the efficiency of the algorithm. To deal with arbitrary reflectance, we investigate polarimetric imaging and develop polarimetric Helmholtz stereopsis that uses reciprocal polarimetric image pairs for high-fidelity 3D surface reconstruction. We formulate new reciprocity and diffuse/specular polarimetric constraints to recover surface depths and normals using an optimization framework. To recover the 3D shape in the unknown and uncontrolled natural illumination, we use two circularly polarized spotlights to boost the polarization cues corrupted by the environment lighting, as well as to provide photometric cues. To mitigate the effect of uncontrolled environment light in photometric constraints, we estimate a lighting proxy map and iteratively refine the normal and lighting estimation. Through expensive experiments on the simulated and real images, we demonstrate that our proposed computational imaging methods outperform traditional imaging approaches

    Obtaining malignant melanoma indicators through statistical analysis of 3D skin surface disruptions

    Get PDF
    Background/purpose: It has been observed that disruptions in skin patterns are larger for malignant melanoma (MM) than benign lesions. In order to extend the classification results achieved for 2D skin patterns, this work intends to investigate the feasibility of lesion classification using 3D skin surface texture, in the form of surface normals acquired from a previously built six-light photometric stereo device. Material and methods: The proposed approach seeks to separate MM from benign lesions through analysis of the degree of surface disruptions in the tilt and slant direction of surface normals, so called skin tilt pattern and skin slant pattern. A 2D Gaussian function is used to simulate a normal region of skin for comparison with a lesion's observed tilt and slant patterns. The differences associated with the two patterns are estimated as the disruptions in the tilt and slant pattern respectively for lesion classification. Results: Preliminary studies on11 MMs and 28 benign lesions have given Receiver operating characteristic areas of 0.73 and 0.85 for tilt and slant pattern, respectively, which are better than 0.65 previously obtained for the skin line direction using the same samples. Conclusions: This paper has demonstrated an important application of 3D skin texture for computer-assisted diagnosis of MM in vivo. By taking advantage of the extra dimensional information, preliminary studies suggest that some improvements over the existing 2D skin line pattern approach for the differentiation between MM and benign lesions. © 2009 John Wiley & Sons A/S
    corecore