406 research outputs found

    Generic Feasibility of Perfect Reconstruction with Short FIR Filters in Multi-channel Systems

    Full text link
    We study the feasibility of short finite impulse response (FIR) synthesis for perfect reconstruction (PR) in generic FIR filter banks. Among all PR synthesis banks, we focus on the one with the minimum filter length. For filter banks with oversampling factors of at least two, we provide prescriptions for the shortest filter length of the synthesis bank that would guarantee PR almost surely. The prescribed length is as short or shorter than the analysis filters and has an approximate inverse relationship with the oversampling factor. Our results are in form of necessary and sufficient statements that hold generically, hence only fail for elaborately-designed nongeneric examples. We provide extensive numerical verification of the theoretical results and demonstrate that the gap between the derived filter length prescriptions and the true minimum is small. The results have potential applications in synthesis FB design problems, where the analysis bank is given, and for analysis of fundamental limitations in blind signals reconstruction from data collected by unknown subsampled multi-channel systems.Comment: Manuscript submitted to IEEE Transactions on Signal Processin

    Oversampling PCM techniques and optimum noise shapers for quantizing a class of nonbandlimited signals

    Get PDF
    We consider the efficient quantization of a class of nonbandlimited signals, namely, the class of discrete-time signals that can be recovered from their decimated version. The signals are modeled as the output of a single FIR interpolation filter (single band model) or, more generally, as the sum of the outputs of L FIR interpolation filters (multiband model). These nonbandlimited signals are oversampled, and it is therefore reasonable to expect that we can reap the same benefits of well-known efficient A/D techniques that apply only to bandlimited signals. We first show that we can obtain a great reduction in the quantization noise variance due to the oversampled nature of the signals. We can achieve a substantial decrease in bit rate by appropriately decimating the signals and then quantizing them. To further increase the effective quantizer resolution, noise shaping is introduced by optimizing prefilters and postfilters around the quantizer. We start with a scalar time-invariant quantizer and study two important cases of linear time invariant (LTI) filters, namely, the case where the postfilter is the inverse of the prefilter and the more general case where the postfilter is independent from the prefilter. Closed form expressions for the optimum filters and average minimum mean square error are derived in each case for both the single band and multiband models. The class of noise shaping filters and quantizers is then enlarged to include linear periodically time varying (LPTV)M filters and periodically time-varying quantizers of period M. We study two special cases in great detail

    Efficient TV white space filter bank transceiver

    Get PDF
    Future devices operating in the TV white space (TVWS) spectrum will require to access different bands at different locations and times in order to avoid interference to incumbent users, requiring agility and sufficient spectral masks to satisfy regulators. Further, with very high-speed ADCs and DACs becoming reality, the purpose of this paper is to present a transceiver front-end capable of simultaneously up- and downconverting a significant portion of the UHF band. The proposed approach takes a two-stage filter-bank conversion for implementation on state-of-the-art FPGAs. We present three different parameterisations, which are compatible with the 40 TVWS channels between 470 and 790MHz in Europe, and compare them in terms of complexity and latency

    Parity-check matrix calculation for paraunitary oversampled DFT filter banks

    No full text
    International audienceOversampled filter banks, interpreted as error correction codes, were recently introduced in the literature. We here present an efficient calculation and implementation of the parity-check polynomial matrices for oversampled DFT filter banks. If desired, the calculation of the partity-check polynomials can be performed as part of the prototype filter design procedure. We compare our method to those previously presented in the literature

    Fractional biorthogonal partners in channel equalization and signal interpolation

    Get PDF
    The concept of biorthogonal partners has been introduced recently by the authors. The work presented here is an extension of some of these results to the case where the upsampling and downsampling ratios are not integers but rational numbers, hence, the name fractional biorthogonal partners. The conditions for the existence of stable and of finite impulse response (FIR) fractional biorthogonal partners are derived. It is also shown that the FIR solutions (when they exist) are not unique. This property is further explored in one of the applications of fractional biorthogonal partners, namely, the fractionally spaced equalization in digital communications. The goal is to construct zero-forcing equalizers (ZFEs) that also combat the channel noise. The performance of these equalizers is assessed through computer simulations. Another application considered is the all-FIR interpolation technique with the minimum amount of oversampling required in the input signal. We also consider the extension of the least squares approximation problem to the setting of fractional biorthogonal partners

    Blind MultiChannel Identification and Equalization for Dereverberation and Noise Reduction based on Convolutive Transfer Function

    Get PDF
    This paper addresses the problems of blind channel identification and multichannel equalization for speech dereverberation and noise reduction. The time-domain cross-relation method is not suitable for blind room impulse response identification, due to the near-common zeros of the long impulse responses. We extend the cross-relation method to the short-time Fourier transform (STFT) domain, in which the time-domain impulse responses are approximately represented by the convolutive transfer functions (CTFs) with much less coefficients. The CTFs suffer from the common zeros caused by the oversampled STFT. We propose to identify CTFs based on the STFT with the oversampled signals and the critical sampled CTFs, which is a good compromise between the frequency aliasing of the signals and the common zeros problem of CTFs. In addition, a normalization of the CTFs is proposed to remove the gain ambiguity across sub-bands. In the STFT domain, the identified CTFs is used for multichannel equalization, in which the sparsity of speech signals is exploited. We propose to perform inverse filtering by minimizing the 1\ell_1-norm of the source signal with the relaxed 2\ell_2-norm fitting error between the micophone signals and the convolution of the estimated source signal and the CTFs used as a constraint. This method is advantageous in that the noise can be reduced by relaxing the 2\ell_2-norm to a tolerance corresponding to the noise power, and the tolerance can be automatically set. The experiments confirm the efficiency of the proposed method even under conditions with high reverberation levels and intense noise.Comment: 13 pages, 5 figures, 5 table
    corecore