15,136 research outputs found

    Multimodal music information processing and retrieval: survey and future challenges

    Full text link
    Towards improving the performance in various music information processing tasks, recent studies exploit different modalities able to capture diverse aspects of music. Such modalities include audio recordings, symbolic music scores, mid-level representations, motion, and gestural data, video recordings, editorial or cultural tags, lyrics and album cover arts. This paper critically reviews the various approaches adopted in Music Information Processing and Retrieval and highlights how multimodal algorithms can help Music Computing applications. First, we categorize the related literature based on the application they address. Subsequently, we analyze existing information fusion approaches, and we conclude with the set of challenges that Music Information Retrieval and Sound and Music Computing research communities should focus in the next years

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    Multiple instance learning for sequence data with across bag dependencies

    Full text link
    In Multiple Instance Learning (MIL) problem for sequence data, the instances inside the bags are sequences. In some real world applications such as bioinformatics, comparing a random couple of sequences makes no sense. In fact, each instance may have structural and/or functional relations with instances of other bags. Thus, the classification task should take into account this across bag relation. In this work, we present two novel MIL approaches for sequence data classification named ABClass and ABSim. ABClass extracts motifs from related instances and use them to encode sequences. A discriminative classifier is then applied to compute a partial classification result for each set of related sequences. ABSim uses a similarity measure to discriminate the related instances and to compute a scores matrix. For both approaches, an aggregation method is applied in order to generate the final classification result. We applied both approaches to solve the problem of bacterial Ionizing Radiation Resistance prediction. The experimental results of the presented approaches are satisfactory
    corecore