632 research outputs found

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial

    Optimizing Network Coding Algorithms for Multiple Applications.

    Get PDF
    Deviating from the archaic communication approach of treating information as a fluid moving through pipes, the concepts of Network Coding (NC) suggest that optimal throughput of a multicast network can be achieved by processing information at individual network nodes. However, existing challenges to harness the advantages of NC concepts for practical applications have prevented the development of NC into an effective solution to increase the performance of practical communication networks. In response, the research work presented in this thesis proposes cross-layer NC solutions to increase the network throughput of data multicast as well as video quality of video multicast applications. First, three algorithms are presented to improve the throughput of NC enabled networks by minimizing the NC coefficient vector overhead, optimizing the NC redundancy allocation and improving the robustness of NC against bursty packet losses. Considering the fact that majority of network traffic occupies video, rest of the proposed NC algorithms are content-aware and are optimized for both data and video multicast applications. A set of content and network-aware optimization algorithms, which allocate redundancies for NC considering content properties as well as the network status, are proposed to efficiently multicast data and video across content delivery networks. Furthermore content and channel-aware joint channel and network coding algorithms are proposed to efficiently multicast data and video across wireless networks. Finally, the possibilities of performing joint source and network coding are explored to increase the robustness of high volume video multicast applications. Extensive simulation studies indicate significant improvements with the proposed algorithms to increase the network throughput and video quality over related state-of-the-art solutions. Hence, it is envisaged that the proposed algorithms will contribute to the advancement of data and video multicast protocols in the future communication networks

    DESIGN OF EFFICIENT IN-NETWORK DATA PROCESSING AND DISSEMINATION FOR VANETS

    Get PDF
    By providing vehicle-to-vehicle and vehicle-to-infrastructure wireless communications, vehicular ad hoc networks (VANETs), also known as the “networks on wheels”, can greatly enhance traffic safety, traffic efficiency and driving experience for intelligent transportation system (ITS). However, the unique features of VANETs, such as high mobility and uneven distribution of vehicular nodes, impose critical challenges of high efficiency and reliability for the implementation of VANETs. This dissertation is motivated by the great application potentials of VANETs in the design of efficient in-network data processing and dissemination. Considering the significance of message aggregation, data dissemination and data collection, this dissertation research targets at enhancing the traffic safety and traffic efficiency, as well as developing novel commercial applications, based on VANETs, following four aspects: 1) accurate and efficient message aggregation to detect on-road safety relevant events, 2) reliable data dissemination to reliably notify remote vehicles, 3) efficient and reliable spatial data collection from vehicular sensors, and 4) novel promising applications to exploit the commercial potentials of VANETs. Specifically, to enable cooperative detection of safety relevant events on the roads, the structure-less message aggregation (SLMA) scheme is proposed to improve communication efficiency and message accuracy. The scheme of relative position based message dissemination (RPB-MD) is proposed to reliably and efficiently disseminate messages to all intended vehicles in the zone-of-relevance in varying traffic density. Due to numerous vehicular sensor data available based on VANETs, the scheme of compressive sampling based data collection (CS-DC) is proposed to efficiently collect the spatial relevance data in a large scale, especially in the dense traffic. In addition, with novel and efficient solutions proposed for the application specific issues of data dissemination and data collection, several appealing value-added applications for VANETs are developed to exploit the commercial potentials of VANETs, namely general purpose automatic survey (GPAS), VANET-based ambient ad dissemination (VAAD) and VANET based vehicle performance monitoring and analysis (VehicleView). Thus, by improving the efficiency and reliability in in-network data processing and dissemination, including message aggregation, data dissemination and data collection, together with the development of novel promising applications, this dissertation will help push VANETs further to the stage of massive deployment

    Distributed minimum cost multicasting with lossless source coding and network coding

    Get PDF
    In this paper, we consider minimum cost lossless source coding for multiple multicast sessions. Each session comprises a set of correlated sources whose information is demanded by a set of sink nodes. We propose a distributed end-to-end algorithm which operates over given multicast trees, and a back-pressure algorithm which optimizes routing and coding over the whole network. Unlike other existing algorithms, the source rates need not be centrally coordinated; the sinks control transmission rates across the sources. With random network coding, the proposed approach yields completely distributed and optimal algorithms for intra-session network coding. We prove the convergence of our proposed algorithms. Some practical considerations are also discussed. Experimental results are provided to complement our theoretical analysis

    Recent Developments on Mobile Ad-Hoc Networks and Vehicular Ad-Hoc Networks

    Get PDF
    This book presents collective works published in the recent Special Issue (SI) entitled "Recent Developments on Mobile Ad-Hoc Networks and Vehicular Ad-Hoc Networks”. These works expose the readership to the latest solutions and techniques for MANETs and VANETs. They cover interesting topics such as power-aware optimization solutions for MANETs, data dissemination in VANETs, adaptive multi-hop broadcast schemes for VANETs, multi-metric routing protocols for VANETs, and incentive mechanisms to encourage the distribution of information in VANETs. The book demonstrates pioneering work in these fields, investigates novel solutions and methods, and discusses future trends in these field

    Network coding meets multimedia: a review

    Get PDF
    While every network node only relays messages in a traditional communication system, the recent network coding (NC) paradigm proposes to implement simple in-network processing with packet combinations in the nodes. NC extends the concept of "encoding" a message beyond source coding (for compression) and channel coding (for protection against errors and losses). It has been shown to increase network throughput compared to traditional networks implementation, to reduce delay and to provide robustness to transmission errors and network dynamics. These features are so appealing for multimedia applications that they have spurred a large research effort towards the development of multimedia-specific NC techniques. This paper reviews the recent work in NC for multimedia applications and focuses on the techniques that fill the gap between NC theory and practical applications. It outlines the benefits of NC and presents the open challenges in this area. The paper initially focuses on multimedia-specific aspects of network coding, in particular delay, in-network error control, and mediaspecific error control. These aspects permit to handle varying network conditions as well as client heterogeneity, which are critical to the design and deployment of multimedia systems. After introducing these general concepts, the paper reviews in detail two applications that lend themselves naturally to NC via the cooperation and broadcast models, namely peer-to-peer multimedia streaming and wireless networkin

    Hybrid Satellite-Terrestrial Communication Networks for the Maritime Internet of Things: Key Technologies, Opportunities, and Challenges

    Get PDF
    With the rapid development of marine activities, there has been an increasing number of maritime mobile terminals, as well as a growing demand for high-speed and ultra-reliable maritime communications to keep them connected. Traditionally, the maritime Internet of Things (IoT) is enabled by maritime satellites. However, satellites are seriously restricted by their high latency and relatively low data rate. As an alternative, shore & island-based base stations (BSs) can be built to extend the coverage of terrestrial networks using fourth-generation (4G), fifth-generation (5G), and beyond 5G services. Unmanned aerial vehicles can also be exploited to serve as aerial maritime BSs. Despite of all these approaches, there are still open issues for an efficient maritime communication network (MCN). For example, due to the complicated electromagnetic propagation environment, the limited geometrically available BS sites, and rigorous service demands from mission-critical applications, conventional communication and networking theories and methods should be tailored for maritime scenarios. Towards this end, we provide a survey on the demand for maritime communications, the state-of-the-art MCNs, and key technologies for enhancing transmission efficiency, extending network coverage, and provisioning maritime-specific services. Future challenges in developing an environment-aware, service-driven, and integrated satellite-air-ground MCN to be smart enough to utilize external auxiliary information, e.g., sea state and atmosphere conditions, are also discussed

    Energy-delay region of low duty cycle wireless sensor networks for critical data collection

    Get PDF
    Session: Sensor networksThe Conference program's website is located at http://ita.ucsd.edu/workshop/14/talksWe investigate the trade-off between energy consumption and delay for critical data collection in low duty cycle wireless sensor networks, where a causality constraint exists for routing and link scheduling. We characterize the energy-delay region (E-D region) and formulate a combinatorial optimization problem to determine the link scheduling with the causality constraint. A new multiple-degree ordered (MDO) coloring method is proposed to solve this problem with near-optimal delay performance. The impacts of many system parameters on the ED region are evaluated by extensive simulation, providing an insightful frame of reference for design of critical data collection wireless sensor networks.postprin
    • …
    corecore