707 research outputs found

    Numerical Modeling of a Spherical Array of Monopoles Using FDTD Method

    Get PDF

    2008 Index IEEE Transactions on Control Systems Technology Vol. 16

    Get PDF
    This index covers all technical items - papers, correspondence, reviews, etc. - that appeared in this periodical during the year, and items from previous years that were commented upon or corrected in this year. Departments and other items may also be covered if they have been judged to have archival value. The Author Index contains the primary entry for each item, listed under the first author\u27s name. The primary entry includes the coauthors\u27 names, the title of the paper or other item, and its location, specified by the publication abbreviation, year, month, and inclusive pagination. The Subject Index contains entries describing the item under all appropriate subject headings, plus the first author\u27s name, the publication abbreviation, month, and year, and inclusive pages. Note that the item title is found only under the primary entry in the Author Index

    2009 Index IEEE Antennas and Wireless Propagation Letters Vol. 8

    Get PDF
    This index covers all technical items - papers, correspondence, reviews, etc. - that appeared in this periodical during the year, and items from previous years that were commented upon or corrected in this year. Departments and other items may also be covered if they have been judged to have archival value. The Author Index contains the primary entry for each item, listed under the first author\u27s name. The primary entry includes the coauthors\u27 names, the title of the paper or other item, and its location, specified by the publication abbreviation, year, month, and inclusive pagination. The Subject Index contains entries describing the item under all appropriate subject headings, plus the first author\u27s name, the publication abbreviation, month, and year, and inclusive pages. Note that the item title is found only under the primary entry in the Author Index

    Spherical Horn Array for Wideband Propagation Measurements

    Get PDF

    Radio frequency energy harvesting for autonomous systems

    Get PDF
    A thesis submitted to the University of Bedfordshire in partial fulfilment of the requirements for the degree of Doctor of PhilosophyRadio Frequency Energy Harvesting (RFEH) is a technology which enables wireless power delivery to multiple devices from a single energy source. The main components of this technology are the antenna and the rectifying circuitry that converts the RF signal into DC power. The devices which are using Radio Frequency (RF) power may be integrated into Wireless Sensor Networks (WSN), Radio Frequency Identification (RFID), biomedical implants, Internet of Things (IoT), Unmanned Aerial Vehicles (UAVs), smart meters, telemetry systems and may even be used to charge mobile phones. Aside from autonomous systems such as WSNs and RFID, the multi-billion portable electronics market – from GSM phones to MP3 players – would be an attractive application for RF energy harvesting if the power requirements are met. To investigate the potential for ambient RFEH, several RF site surveys were conducted around London. Using the results from these surveys, various harvesters were designed and tested for different frequency bands from the RF sources with the highest power density within the Medium Wave (MW), ultra- and super-high (UHF and SHF) frequency spectrum. Prototypes were fabricated and tested for each of the bands and proved that a large urban area around Brookmans park radio centre is suitable location for harvesting ambient RF energy. Although the RFEH offers very good efficiency performance, if a single antenna is considered, the maximum power delivered is generally not enough to power all the elements of an autonomous system. In this thesis we present techniques for optimising the power efficiency of the RFEH device under demanding conditions such as ultra-low power densities, arbitrary polarisation and diverse load impedances. Subsequently, an energy harvesting ferrite rod rectenna is designed to power up a wireless sensor and its transmitter, generating dedicated Medium Wave (MW) signals in an indoor environment. Harvested power management, application scenarios and practical results are also presented

    Improving the Performance of Patch Antenna by Applying Bandwidth Enhancement Techniques for 5G Applications

    Get PDF
    In this study, various Rectangular Microstrip Antenna (RMA) designs operating at 28 GHz frequency for 5G-communication system are performed. All designs are generated and analyzed using a 3D electromagnetic simulation program, ANSYS HFSS (High-Frequency Structure Simulator). Single and array type RMA designs are constructed by using non-contact inset-fed feeding technique. Subsequently, the bandwidth of RMAs is increased by slotting on the ground surface, and adding a parasitic element to the antenna structure. Because of these analyses, for single type RMA, the bandwidth increases from 2.09 GHz to 3.45 GHz. Moreover, for 1 × 2 and 1 × 4 array type RMAs, very wide bandwidths of 7.53 GHz and 4.53 GHz, respectively, are obtained by applying bandwidth enhancement techniques. The success of the study has been demonstrated by comparing outputs of the designs with the some similar, experimental or simulation studies published in the literature

    Broadband 3-D shared aperture high isolation nine-element antenna array for on-demand millimeter-wave 5G applications

    Get PDF
    The paper presents the results of a novel 3-D shared aperture 3 × 3 matrix antenna-array for 26 GHz band 5 G wireless networks. Radiation elements constituting the array are hexagonal-shaped patches that are elevated above the common dielectric substrate by 3.35 mm and excited through a metallic rod of 0.4 mm diameter. The rod protrudes through the substrate of 0.8 mm thickness. It is shown that by isolating each radiating element in the array with a wall suppresses unwanted electromagnetic (EM) wave interactions, resulting in improvement in the antenna’s impedance matching and radiation characteristics. Moreover, the results show that by embedding hexagonalshaped slots in the patches improve the antenna’s gain and radiation efficiency performance. The subwavelength length slots in the patches essentially transform the radiating elements to exhibit metasurface characteristics when the array is illuminated by EM-waves. The proposed array structure has an average gain and radiation efficiency of 20 dBi and 93%, respectively, across 24.0–28.4 GHz. The isolation between its radiation elements is greater than 22 dB. Compared to the unslotted array the improvement in isolation between radiating elements is greater than 11dB, and the gain and efficiency are better than 10.5 dBi, and 25%, respectively. The compact array has a fractional bandwidth of 16% and a form factor of 20 × 20 × 3.35 mm3.Dr. Mohammad Alibakhshikenari acknowledges support from the CONEX-Plus programme funded by Universidad Carlos III de Madrid and the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 801538. Also, this work was supported by Project RTI2018-095499-B-C31, funded by the Ministerio de Ciencia, Innovación y Universidades, Gobierno de España (MCIU/AEI/FEDER, UE)

    Analysis of massive MIMO performance in an indoor picocell with high number of users

    Get PDF
    This paper presents an analysis of the massive multiple input and multiple output (MIMO) channel in an indoor picocell with a high number of active user terminals and a base station consisting of a virtual array with up to one hundred elements. The analysis is based on the results of a measurement campaign carried out in the 3.2 to 4 GHz band in a scenario of reduced size and with a symmetrical geometry, in which users are also placed in an orderly manner. The channel meets the condition of favorable propagation depending on several factors, one of the most important being the spatial distribution of users. Results concerning the inverse condition number as well as the channel sum capacity are included. Another factor that determines the performance of massive MIMO systems when operated in an orthogonal frequency division multiplexing (OFDM) framework is the frequency selectivity of the channel that limits the size of the coherence block (ChB). Focusing on the most significant results achieved, it can be concluded that the channel reaches a capacity of 89% with respect to an i.i.d. Rayleigh channel. Concerning the cumulative distribution function (CDF) of the sum capacity, it can also be observed that the tails are not very pronounced, which indicates that a homogeneous service can be given to all users. Regarding the number of samples that make up the ChB, although it is high in all cases (of the order of tens of thousands), it strongly depends on the degree of correlation used to calculate the coherence bandwidth.This work was supported in part by the Spanish Ministerio de Economía, Industria y Competitividad, under Grant TEC2017-86779-C2-1-R, in part by the European economic community (EEC) through Fondo Europeo de Desarrollo Regional (FEDER) funds, and in part by the Spanish Ministerio de Ciencia e Innovación under Grant UCAN08-4E-010

    Wireless Charging: Its types, Standards and Applications

    Get PDF
    An electrical gadget can be powered without cords by providing electrical via an air pocket to the device in order to re-charge its capacity. The performance and practicality of cordless charging tech have noticeably enhanced lately. The introduction to cordless charging in this paper covers its basics. The evaluation of standards, which includes Qi and the A4WP, is then given, as well as a focus on their communications channels. Next, we put out a cutting-edge idea for cordless charger networking, which enables chargers to be linked for easier data gathering and management. We explain how the wireless charger network can be used to assign users to chargers, which demonstrates the usefulness in terms of a reduction costs for users to find the best chargers to recharge their mobile devices
    • …
    corecore