1,793 research outputs found

    AoA-aware Probabilistic Indoor Location Fingerprinting using Channel State Information

    Full text link
    With expeditious development of wireless communications, location fingerprinting (LF) has nurtured considerable indoor location based services (ILBSs) in the field of Internet of Things (IoT). For most pattern-matching based LF solutions, previous works either appeal to the simple received signal strength (RSS), which suffers from dramatic performance degradation due to sophisticated environmental dynamics, or rely on the fine-grained physical layer channel state information (CSI), whose intricate structure leads to an increased computational complexity. Meanwhile, the harsh indoor environment can also breed similar radio signatures among certain predefined reference points (RPs), which may be randomly distributed in the area of interest, thus mightily tampering the location mapping accuracy. To work out these dilemmas, during the offline site survey, we first adopt autoregressive (AR) modeling entropy of CSI amplitude as location fingerprint, which shares the structural simplicity of RSS while reserving the most location-specific statistical channel information. Moreover, an additional angle of arrival (AoA) fingerprint can be accurately retrieved from CSI phase through an enhanced subspace based algorithm, which serves to further eliminate the error-prone RP candidates. In the online phase, by exploiting both CSI amplitude and phase information, a novel bivariate kernel regression scheme is proposed to precisely infer the target's location. Results from extensive indoor experiments validate the superior localization performance of our proposed system over previous approaches

    Location-free Spectrum Cartography

    Get PDF
    Spectrum cartography constructs maps of metrics such as channel gain or received signal power across a geographic area of interest using spatially distributed sensor measurements. Applications of these maps include network planning, interference coordination, power control, localization, and cognitive radios to name a few. Since existing spectrum cartography techniques require accurate estimates of the sensor locations, their performance is drastically impaired by multipath affecting the positioning pilot signals, as occurs in indoor or dense urban scenarios. To overcome such a limitation, this paper introduces a novel paradigm for spectrum cartography, where estimation of spectral maps relies on features of these positioning signals rather than on location estimates. Specific learning algorithms are built upon this approach and offer a markedly improved estimation performance than existing approaches relying on localization, as demonstrated by simulation studies in indoor scenarios.Comment: 14 pages, 12 figures, 1 table. Submitted to IEEE Transactions on Signal Processin

    Evaluating indoor positioning systems in a shopping mall : the lessons learned from the IPIN 2018 competition

    Get PDF
    The Indoor Positioning and Indoor Navigation (IPIN) conference holds an annual competition in which indoor localization systems from different research groups worldwide are evaluated empirically. The objective of this competition is to establish a systematic evaluation methodology with rigorous metrics both for real-time (on-site) and post-processing (off-site) situations, in a realistic environment unfamiliar to the prototype developers. For the IPIN 2018 conference, this competition was held on September 22nd, 2018, in Atlantis, a large shopping mall in Nantes (France). Four competition tracks (two on-site and two off-site) were designed. They consisted of several 1 km routes traversing several floors of the mall. Along these paths, 180 points were topographically surveyed with a 10 cm accuracy, to serve as ground truth landmarks, combining theodolite measurements, differential global navigation satellite system (GNSS) and 3D scanner systems. 34 teams effectively competed. The accuracy score corresponds to the third quartile (75th percentile) of an error metric that combines the horizontal positioning error and the floor detection. The best results for the on-site tracks showed an accuracy score of 11.70 m (Track 1) and 5.50 m (Track 2), while the best results for the off-site tracks showed an accuracy score of 0.90 m (Track 3) and 1.30 m (Track 4). These results showed that it is possible to obtain high accuracy indoor positioning solutions in large, realistic environments using wearable light-weight sensors without deploying any beacon. This paper describes the organization work of the tracks, analyzes the methodology used to quantify the results, reviews the lessons learned from the competition and discusses its future

    AN ADAPTIVE LOCALIZATION SYSTEM USING PARTICLE SWARM OPTIMIZATION IN A CIRCULAR DISTRIBUTION FORM

    Get PDF
    Tracking the user location in indoor environment becomes substantial issue in recent research High accuracy and fast convergence are very important issues for a good localization system. One of the techniques that are used in localization systems is particle swarm optimization (PSO). This technique is a stochastic optimization based on the movement and velocity of particles. In this paper, we introduce an algorithm using PSO for indoor localization system. The proposed algorithm uses PSO to generate several particles that have circular distribution around one access point (AP). The PSO generates particles where the distance from each particle to the AP is the same distance from the AP to the target. The particle which achieves correct distances (distances from each AP to target) is selected as the target. Four PSO variants, namely standard PSO (SPSO), linearly decreasing inertia weight PSO (LDIW PSO), self-organizing hierarchical PSO with time acceleration coefficients (HPSO-TVAC), and constriction factor PSO (CFPSO) are used to find the minimum distance error. The simulation results show the proposed method using HPSO-TVAC variant achieves very low distance error of 0.19 mete

    Massive MIMO-based Localization and Mapping Exploiting Phase Information of Multipath Components

    Get PDF
    In this paper, we present a robust multipath-based localization and mapping framework that exploits the phases of specular multipath components (MPCs) using a massive multiple-input multiple-output (MIMO) array at the base station. Utilizing the phase information related to the propagation distances of the MPCs enables the possibility of localization with extraordinary accuracy even with limited bandwidth. The specular MPC parameters along with the parameters of the noise and the dense multipath component (DMC) are tracked using an extended Kalman filter (EKF), which enables to preserve the distance-related phase changes of the MPC complex amplitudes. The DMC comprises all non-resolvable MPCs, which occur due to finite measurement aperture. The estimation of the DMC parameters enhances the estimation quality of the specular MPCs and therefore also the quality of localization and mapping. The estimated MPC propagation distances are subsequently used as input to a distance-based localization and mapping algorithm. This algorithm does not need prior knowledge about the surrounding environment and base station position. The performance is demonstrated with real radio-channel measurements using an antenna array with 128 ports at the base station side and a standard cellular signal bandwidth of 40 MHz. The results show that high accuracy localization is possible even with such a low bandwidth.Comment: 14 pages (two columns), 13 figures. This work has been submitted to the IEEE Transaction on Wireless Communications for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Emitter Location Finding using Particle Swarm Optimization

    Get PDF
    Using several spatially separated receivers, nowadays positioning techniques, which are implemented to determine the location of the transmitter, are often required for several important disciplines such as military, security, medical, and commercial applications. In this study, localization is carried out by particle swarm optimization using time difference of arrival. In order to increase the positioning accuracy, time difference of arrival averaging based two new methods are proposed. Results are compared with classical algorithms and Cramer-Rao lower bound which is the theoretical limit of the estimation error

    Optimization of Massive Full-Dimensional MIMO for Positioning and Communication

    Full text link
    Massive Full-Dimensional multiple-input multiple-output (FD-MIMO) base stations (BSs) have the potential to bring multiplexing and coverage gains by means of three-dimensional (3D) beamforming. Key technical challenges for their deployment include the presence of limited-resolution front ends and the acquisition of channel state information (CSI) at the BSs. This paper investigates the use of FD-MIMO BSs to provide simultaneously high-rate data communication and mobile 3D positioning in the downlink. The analysis concentrates on the problem of beamforming design by accounting for imperfect CSI acquisition via Time Division Duplex (TDD)-based training and for the finite resolution of analog-to-digital converter (ADC) and digital-to-analog converter (DAC) at the BSs. Both \textit{unstructured beamforming} and a low-complexity \textit{Kronecker beamforming} solution are considered, where for the latter the beamforming vectors are decomposed into separate azimuth and elevation components. The proposed algorithmic solutions are based on Bussgang theorem, rank-relaxation and successive convex approximation (SCA) methods. Comprehensive numerical results demonstrate that the proposed schemes can effectively cater to both data communication and positioning services, providing only minor performance degradations as compared to the more conventional cases in which either function is implemented. Moreover, the proposed low-complexity Kronecker beamforming solutions are seen to guarantee a limited performance loss in the presence of a large number of BS antennas.Comment: 30 pages, 6 figure
    corecore