55,996 research outputs found

    Security Constrained Multi-Stage Transmission Expansion Planning Considering a Continuously Variable Series Reactor

    Full text link
    This paper introduces a Continuously Variable Series Reactor (CVSR) to the transmission expansion planning (TEP) problem. The CVSR is a FACTS-like device which has the capability of controlling the overall impedance of the transmission line. However, the cost of the CVSR is about one tenth of a similar rated FACTS device which potentially allows large numbers of devices to be installed. The multi-stage TEP with the CVSR considering the N−1N-1 security constraints is formulated as a mixed integer linear programming model. The nonlinear part of the power flow introduced by the variable reactance is linearized by a reformulation technique. To reduce the computational burden for a practical large scale system, a decomposition approach is proposed. The detailed simulation results on the IEEE 24-bus and a more practical Polish 2383-bus system demonstrate the effectiveness of the approach. Moreover, the appropriately allocated CVSRs add flexibility to the TEP problem and allow reduced planning costs. Although the proposed decomposition approach cannot guarantee global optimality, a high level picture of how the network can be planned reliably and economically considering CVSR is achieved.Comment: Accepted by IEEE Transactions on Power System

    Energy-Efficient Heterogeneous Cellular Networks with Spectrum Underlay and Overlay Access

    Full text link
    In this paper, we provide joint subcarrier assignment and power allocation schemes for quality-of-service (QoS)-constrained energy-efficiency (EE) optimization in the downlink of an orthogonal frequency division multiple access (OFDMA)-based two-tier heterogeneous cellular network (HCN). Considering underlay transmission, where spectrum-efficiency (SE) is fully exploited, the EE solution involves tackling a complex mixed-combinatorial and non-convex optimization problem. With appropriate decomposition of the original problem and leveraging on the quasi-concavity of the EE function, we propose a dual-layer resource allocation approach and provide a complete solution using difference-of-two-concave-functions approximation, successive convex approximation, and gradient-search methods. On the other hand, the inherent inter-tier interference from spectrum underlay access may degrade EE particularly under dense small-cell deployment and large bandwidth utilization. We therefore develop a novel resource allocation approach based on the concepts of spectrum overlay access and resource efficiency (RE) (normalized EE-SE trade-off). Specifically, the optimization procedure is separated in this case such that the macro-cell optimal RE and corresponding bandwidth is first determined, then the EE of small-cells utilizing the remaining spectrum is maximized. Simulation results confirm the theoretical findings and demonstrate that the proposed resource allocation schemes can approach the optimal EE with each strategy being superior under certain system settings
    • …
    corecore