4 research outputs found

    Variation Analysis, Fault Modeling and Yield Improvement of Emerging Spintronic Memories

    Get PDF

    STT-MRAM characterization and its test implications

    Get PDF
    Spin torque transfer (STT)-magnetoresistive random-access memory (MRAM) has come a long way in research to meet the speed and power consumption requirements for future memory applications. The state-of-the-art STT-MRAM bit-cells employ magnetic tunnel junction (MTJ) with perpendicular magnetic anisotropy (PMA). The process repeatabil- ity and yield stability for wafer fabrication are some of the critical issues encountered in STT-MRAM mass production. Some of the yield improvement techniques to combat the e ect of process variations have been previously explored. However, little research has been done on defect oriented testing of STT-MRAM arrays. In this thesis, the author investi- gates the parameter deviation and non-idealities encountered during the development of a novel MTJ stack con guration. The characterization result provides motivation for the development of the design for testability (DFT) scheme that can help test and characterize STT-MRAM bit-cells and the CMOS peripheral circuitry e ciently. The primary factors for wafer yield degradation are the device parameter variation and its non-uniformity across the wafer due to the fabrication process non-idealities. There- fore, e ective in-process testing strategies for exploring and verifying the impact of the parameter variation on the wafer yield will be needed to achieve fabrication process opti- mization. While yield depends on the CMOS process variability, quality of the deposited MTJ lm, and other process non-idealities, test platform can enable parametric optimiza- tion and veri cation using the CMOS-based DFT circuits. In this work, we develop a DFT algorithm and implement a DFT circuit for parametric testing and prequali cation of the critical circuits in the CMOS wafer. The DFT circuit successfully replicates the electrical characteristics of MTJ devices and captures their spatial variation across the wafer with an error of less than 4%. We estimate the yield of the read sensing path by implement- ing the DFT circuit, which can replicate the resistance-area product variation up to 50% from its nominal value. The yield data from the read sensing path at di erent wafer loca- tions are analyzed, and a usable wafer radius has been estimated. Our DFT scheme can provide quantitative feedback based on in-die measurement, enabling fabrication process optimization through iterative estimation and veri cation of the calibrated parameters. Another concern that prevents mass production of STT-MRAM arrays is the defect formation in MTJ devices due to aging. Identifying manufacturing defects in the magnetic tunnel junction (MTJ) device is crucial for the yield and reliability of spin-torque-transfer (STT) magnetic random-access memory (MRAM) arrays. Several of the MTJ defects result in parametric deviations of the device that deteriorate over time. We extend our work on the DFT scheme by monitoring the electrical parameter deviations occurring due to the defect formation over time. A programmable DFT scheme was implemented for a sub-arrayin 65 nm CMOS technology to evaluate the feasibility of the test scheme. The scheme utilizes the read sense path to compare the bit-cell electrical parameters against known DFT cells characteristics. Built-in-self-test (BIST) methodology is utilized to trigger the onset of the fault once the device parameter crosses a threshold value. We demonstrate the operation and evaluate the accuracy of detection with the proposed scheme. The DFT scheme can be exploited for monitoring aging defects, modeling their behavior and optimization of the fabrication process. DFT scheme could potentially nd numerous applications for parametric characteriza- tion and fault monitoring of STT-MRAM bit-cell arrays during mass production. Some of the applications include a) Fabrication process feedback to improve wafer turnaround time, b) STT-MRAM bit-cell health monitoring, c) Decoupled characterization of the CMOS pe- ripheral circuitry such as read-sensing path and sense ampli er characterization within the STT-MRAM array. Additionally, the DFT scheme has potential applications for detec- tion of fault formation that could be utilized for deploying redundancy schemes, providing a graceful degradation in MTJ-based bit-cell array due to aging of the device, and also providing feedback to improve the fabrication process and yield learning

    Characteristics and Applications of Non-Volatile Resistive Switching (Memristor) Device.

    Full text link
    Non-volatile memory technology scaling has been driven by the ever increasing needs of high-capacity and low-cost data storage. Scaling the conventional floating gate device structure, however, has faced with several technical challenges due to constraints of electrostatics and reliability. Alternative memory approaches based on non-transistor structures has been extensively studied. Among the new approaches, resistive switching devices (RRAM) have attracted tremendous attention due to their high endurance, sub-nanosecond switching, long retention, scalability, low power consumption, high ON/OFF ratio and CMOS compatibility. In this thesis, we present a systematic study on the fundamental understanding and potential applications of RRAMs. Firstly, we introduce a quantitative and accurate model of the dynamic resistive switching processes, by solving the coupled equations for oxygen vacancy transport, current continuity and Joule heating. Secondly, we show systematic investigations on the resistance switching mechanism through detailed noise and transport analysis, and develop a unified model to explain the conduction path and account for the resistance switching effects. Thirdly, we perform detailed retention studies of oxide-based RRAMs at elevated temperatures and develop an oxygen diffusion reliability model of RRAM devices. The activation energy for oxygen vacancy diffusion is directly calculated from the measurement. Analytical modeling and detailed numerical multi-physics simulation is discussed. Fourthly, we report that doping tantalum oxide based RRAM with silicon atoms leads to larger dynamic ranges with improved accessibility to the intermediate states which is suited for neuromorphic computing applications. Lastly, we investigate the application of RRAMs in neuromorphic computing by showing data clustering based on unsupervised learning. Through both simulation and experimental studies, we demonstrate that a crossbar array of RRAM devices can perform data clustering through unsupervised learning and enable effective data classification in a real-world problem. These studies have not only helped the development and optimization of RRAM devices but also highlighted their application potential beyond simple memory. We believe continued development of this emerging device structure may lead to future high-performance and energy efficient memory and logic hardware systems.PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/113635/1/choichos_1.pd
    corecore