603 research outputs found

    A Generative Product-of-Filters Model of Audio

    Full text link
    We propose the product-of-filters (PoF) model, a generative model that decomposes audio spectra as sparse linear combinations of "filters" in the log-spectral domain. PoF makes similar assumptions to those used in the classic homomorphic filtering approach to signal processing, but replaces hand-designed decompositions built of basic signal processing operations with a learned decomposition based on statistical inference. This paper formulates the PoF model and derives a mean-field method for posterior inference and a variational EM algorithm to estimate the model's free parameters. We demonstrate PoF's potential for audio processing on a bandwidth expansion task, and show that PoF can serve as an effective unsupervised feature extractor for a speaker identification task.Comment: ICLR 2014 conference-track submission. Added link to the source cod

    Simulating dysarthric speech for training data augmentation in clinical speech applications

    Full text link
    Training machine learning algorithms for speech applications requires large, labeled training data sets. This is problematic for clinical applications where obtaining such data is prohibitively expensive because of privacy concerns or lack of access. As a result, clinical speech applications are typically developed using small data sets with only tens of speakers. In this paper, we propose a method for simulating training data for clinical applications by transforming healthy speech to dysarthric speech using adversarial training. We evaluate the efficacy of our approach using both objective and subjective criteria. We present the transformed samples to five experienced speech-language pathologists (SLPs) and ask them to identify the samples as healthy or dysarthric. The results reveal that the SLPs identify the transformed speech as dysarthric 65% of the time. In a pilot classification experiment, we show that by using the simulated speech samples to balance an existing dataset, the classification accuracy improves by about 10% after data augmentation.Comment: Will appear in Proc. of ICASSP 201

    Frame Theory for Signal Processing in Psychoacoustics

    Full text link
    This review chapter aims to strengthen the link between frame theory and signal processing tasks in psychoacoustics. On the one side, the basic concepts of frame theory are presented and some proofs are provided to explain those concepts in some detail. The goal is to reveal to hearing scientists how this mathematical theory could be relevant for their research. In particular, we focus on frame theory in a filter bank approach, which is probably the most relevant view-point for audio signal processing. On the other side, basic psychoacoustic concepts are presented to stimulate mathematicians to apply their knowledge in this field

    Robust equalization of multichannel acoustic systems

    Get PDF
    In most real-world acoustical scenarios, speech signals captured by distant microphones from a source are reverberated due to multipath propagation, and the reverberation may impair speech intelligibility. Speech dereverberation can be achieved by equalizing the channels from the source to microphones. Equalization systems can be computed using estimates of multichannel acoustic impulse responses. However, the estimates obtained from system identification always include errors; the fact that an equalization system is able to equalize the estimated multichannel acoustic system does not mean that it is able to equalize the true system. The objective of this thesis is to propose and investigate robust equalization methods for multichannel acoustic systems in the presence of system identification errors. Equalization systems can be computed using the multiple-input/output inverse theorem or multichannel least-squares method. However, equalization systems obtained from these methods are very sensitive to system identification errors. A study of the multichannel least-squares method with respect to two classes of characteristic channel zeros is conducted. Accordingly, a relaxed multichannel least- squares method is proposed. Channel shortening in connection with the multiple- input/output inverse theorem and the relaxed multichannel least-squares method is discussed. Two algorithms taking into account the system identification errors are developed. Firstly, an optimally-stopped weighted conjugate gradient algorithm is proposed. A conjugate gradient iterative method is employed to compute the equalization system. The iteration process is stopped optimally with respect to system identification errors. Secondly, a system-identification-error-robust equalization method exploring the use of error models is presented, which incorporates system identification error models in the weighted multichannel least-squares formulation

    Glottal-synchronous speech processing

    No full text
    Glottal-synchronous speech processing is a field of speech science where the pseudoperiodicity of voiced speech is exploited. Traditionally, speech processing involves segmenting and processing short speech frames of predefined length; this may fail to exploit the inherent periodic structure of voiced speech which glottal-synchronous speech frames have the potential to harness. Glottal-synchronous frames are often derived from the glottal closure instants (GCIs) and glottal opening instants (GOIs). The SIGMA algorithm was developed for the detection of GCIs and GOIs from the Electroglottograph signal with a measured accuracy of up to 99.59%. For GCI and GOI detection from speech signals, the YAGA algorithm provides a measured accuracy of up to 99.84%. Multichannel speech-based approaches are shown to be more robust to reverberation than single-channel algorithms. The GCIs are applied to real-world applications including speech dereverberation, where SNR is improved by up to 5 dB, and to prosodic manipulation where the importance of voicing detection in glottal-synchronous algorithms is demonstrated by subjective testing. The GCIs are further exploited in a new area of data-driven speech modelling, providing new insights into speech production and a set of tools to aid deployment into real-world applications. The technique is shown to be applicable in areas of speech coding, identification and artificial bandwidth extension of telephone speec

    Automatic Identity Recognition Using Speech Biometric

    Get PDF
    Biometric technology refers to the automatic identification of a person using physical or behavioral traits associated with him/her. This technology can be an excellent candidate for developing intelligent systems such as speaker identification, facial recognition, signature verification...etc. Biometric technology can be used to design and develop automatic identity recognition systems, which are highly demanded and can be used in banking systems, employee identification, immigration, e-commerce…etc. The first phase of this research emphasizes on the development of automatic identity recognizer using speech biometric technology based on Artificial Intelligence (AI) techniques provided in MATLAB. For our phase one, speech data is collected from 20 (10 male and 10 female) participants in order to develop the recognizer. The speech data include utterances recorded for the English language digits (0 to 9), where each participant recorded each digit 3 times, which resulted in a total of 600 utterances for all participants. For our phase two, speech data is collected from 100 (50 male and 50 female) participants in order to develop the recognizer. The speech data is divided into text-dependent and text-independent data, whereby each participant selected his/her full name and recorded it 30 times, which makes up the text-independent data. On the other hand, the text-dependent data is represented by a short Arabic language story that contains 16 sentences, whereby every sentence was recorded by every participant 5 times. As a result, this new corpus contains 3000 (30 utterances * 100 speakers) sound files that represent the text-independent data using their full names and 8000 (16 sentences * 5 utterances * 100 speakers) sound files that represent the text-dependent data using the short story. For the purpose of our phase one of developing the automatic identity recognizer using speech, the 600 utterances have undergone the feature extraction and feature classification phases. The speech-based automatic identity recognition system is based on the most dominating feature extraction technique, which is known as the Mel-Frequency Cepstral Coefficient (MFCC). For feature classification phase, the system is based on the Vector Quantization (VQ) algorithm. Based on our experimental results, the highest accuracy achieved is 76%. The experimental results have shown acceptable performance, but can be improved further in our phase two using larger speech data size and better performance classification techniques such as the Hidden Markov Model (HMM)

    An Approach to Extract Feature Using MFCC for Isolated Word in Speaker Identification System

    Get PDF
    The speech is the prominent and natural form of communication among human being. There are different aspects related to speech like speaker identification, speaker recognition, Automatic speech recognition(ASR), speech synthesis etc. The purpose of this work is to study speaker identification system using Hidden markov Model (HMM).The goal of Speaker Identification System (SIS) is to determine which speaker is speaking based on spoken information. The system uses Mel Frequency Cepstral Coefficients(MFCC) for feature extraction , HMM for pattern training and viterbi techniques. The success of MFCC combined with their robust and cost effective combination turned them into a standard choice in speaker identification system.HMM and viterbi decoding provide a highly reliable way of recognizing odia speech

    An investigation of the utility of monaural sound source separation via nonnegative matrix factorization applied to acoustic echo and reverberation mitigation for hands-free telephony

    Get PDF
    In this thesis we investigate the applicability and utility of Monaural Sound Source Separation (MSSS) via Nonnegative Matrix Factorization (NMF) for various problems related to audio for hands-free telephony. We first investigate MSSS via NMF as an alternative acoustic echo reduction approach to existing approaches such as Acoustic Echo Cancellation (AEC). To this end, we present the single-channel acoustic echo problem as an MSSS problem, in which the objective is to extract the users signal from a mixture also containing acoustic echo and noise. To perform separation, NMF is used to decompose the near-end microphone signal onto the union of two nonnegative bases in the magnitude Short Time Fourier Transform domain. One of these bases is for the spectral energy of the acoustic echo signal, and is formed from the in- coming far-end user’s speech, while the other basis is for the spectral energy of the near-end speaker, and is trained with speech data a priori. In comparison to AEC, the speaker extraction approach obviates Double-Talk Detection (DTD), and is demonstrated to attain its maximal echo mitigation performance immediately upon initiation and to maintain that performance during and after room changes for similar computational requirements. Speaker extraction is also shown to introduce distortion of the near-end speech signal during double-talk, which is quantified by means of a speech distortion measure and compared to that of AEC. Subsequently, we address Double-Talk Detection (DTD) for block-based AEC algorithms. We propose a novel block-based DTD algorithm that uses the available signals and the estimate of the echo signal that is produced by NMF-based speaker extraction to compute a suitably normalized correlation-based decision variable, which is compared to a fixed threshold to decide on doubletalk. Using a standard evaluation technique, the proposed algorithm is shown to have comparable detection performance to an existing conventional block-based DTD algorithm. It is also demonstrated to inherit the room change insensitivity of speaker extraction, with the proposed DTD algorithm generating minimal false doubletalk indications upon initiation and in response to room changes in comparison to the existing conventional DTD. We also show that this property allows its paired AEC to converge at a rate close to the optimum. Another focus of this thesis is the problem of inverting a single measurement of a non- minimum phase Room Impulse Response (RIR). We describe the process by which percep- tually detrimental all-pass phase distortion arises in reverberant speech filtered by the inverse of the minimum phase component of the RIR; in short, such distortion arises from inverting the magnitude response of the high-Q maximum phase zeros of the RIR. We then propose two novel partial inversion schemes that precisely mitigate this distortion. One of these schemes employs NMF-based MSSS to separate the all-pass phase distortion from the target speech in the magnitude STFT domain, while the other approach modifies the inverse minimum phase filter such that the magnitude response of the maximum phase zeros of the RIR is not fully compensated. Subjective listening tests reveal that the proposed schemes generally produce better quality output speech than a comparable inversion technique
    • …
    corecore