373 research outputs found

    Software implementation of automatic Fuzzy system generation and optimization

    Get PDF
    Automatic fuzzy system generation from sample data is a common task in fuzzy modeling. Here usually first an initial system is created using clustering, grid partitioning or other approaches and next, the parameters of the system are optimized based on the difference between the sample output and the output of the fuzzy system. The software being presented in this paper supports the whole process providing a wide range of parameterization opportunities. It also includes an optimization toolbox that offers five optimization algorithms, from which one represents a novel approach. The proposed new algoríthm was compared with four well-known methods using several benchmark functions and it ensured better results in case of many functions

    Artificial immune systems based committee machine for classification application

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.A new adaptive learning Artificial Immune System (AIS) based committee machine is developed in this thesis. The new proposed approach efficiently tackles the general problem of clustering high-dimensional data. In addition, it helps on deriving useful decision and results related to other application domains such classification and prediction. Artificial Immune System (AIS) is a branch of computational intelligence field inspired by the biological immune system, and has gained increasing interest among researchers in the development of immune-based models and techniques to solve diverse complex computational or engineering problems. This work presents some applications of AIS techniques to health problems, and a thorough survey of existing AIS models and algorithms. The main focus of this research is devoted to building an ensemble model integrating different AIS techniques (i.e. Artificial Immune Networks, Clonal Selection, and Negative Selection) for classification applications to achieve better classification results. A new AIS-based ensemble architecture with adaptive learning features is proposed by integrating different learning and adaptation techniques to overcome individual limitations and to achieve synergetic effects through the combination of these techniques. Various techniques related to the design and enhancements of the new adaptive learning architecture are studied, including a neuro-fuzzy based detector and an optimizer using particle swarm optimization method to achieve enhanced classification performance. An evaluation study was conducted to show the performance of the new proposed adaptive learning ensemble and to compare it to alternative combining techniques. Several experiments are presented using different medical datasets for the classification problem and findings and outcomes are discussed. The new adaptive learning architecture improves the accuracy of the ensemble. Moreover, there is an improvement over the existing aggregation techniques. The outcomes, assumptions and limitations of the proposed methods with its implications for further research in this area draw this research to its conclusion

    An artificial immune system for fuzzy-rule induction in data mining

    Get PDF
    This work proposes a classification-rule discovery algorithm integrating artificial immune systems and fuzzy systems. The algorithm consists of two parts: a sequential covering procedure and a rule evolution procedure. Each antibody (candidate solution) corresponds to a classification rule. The classification of new examples (antigens) considers not only the fitness of a fuzzy rule based on the entire training set, but also the affinity between the rule and the new example. This affinity must be greater than a threshold in order for the fuzzy rule to be activated, and it is proposed an adaptive procedure for computing this threshold for each rule. This paper reports results for the proposed algorithm in several data sets. Results are analyzed with respect to both predictive accuracy and rule set simplicity, and are compared with C4.5rules, a very popular data mining algorithm

    Inspection and Monitoring of Structural Damage Using Vibration Signatures and Smart Techniques

    Get PDF
    The structural damage detection plays an important role in the evaluation of structural systems and to ensure their safety. Structures like large bridges should be continuously monitored for detection of damage. The cracks usually change the physical parameters like stiffness and flexibility which in turn changes the dynamic properties such as natural frequencies and mode shapes. Crack detection of a beam element comprises of two aspects: the first one is the forward problem which is achieved from the Eigen parameters and the second one is the process to locate and quantify the effect of damage and is termed as ‘inverse process of damage detection’. In the present investigation the analytical and numerical methods are known as the forward problem includes determination of natural frequencies from the knowledge of beam geometry and crack dimension. The vibration signals are derived from the forward problem is exploited in the inverse problem. The natural frequency changes occur due to the various reasons such as boundary condition changes, temperature variations etc. Among all the changes boundary condition changes are the most important factors in structural elements. Many major structures like bridges are made up of uniform beams of unknown boundary conditions. So in the present investigation two of the boundary conditions i.e. fixed -free and fixed- fixed are considered. Using the forward solution method, the natural frequencies are determined. In the inverse solution method various Artificial Intelligence (AI) techniques with their hybrid methods are proposed and implemented. Damage detection problems using Artificial Intelligence techniques require a number of training data sets that represent the uncracked and cracked scenarios of practical structural elements. In the second part of the work different AI techniques like Fuzzy Logic, Genetic Algorithm, Clonal Selection Algorithm, Differential Evolution Algorithm and their hybrid methods are designed and developed. In summary this investigation is a step towards to forecast the position of the damage using the Artificial Intelligence techniques and compare their results. Finally, the results from the Artificial Intelligence techniques and their hybridized algorithms are validated by doing experimental analysis

    Optimizing the performance of an integrated process planning and scheduling problem: an AIS-FLC based approach

    Get PDF
    The present market scenario demands an integration of process planning and scheduling to stay competitive with others. In the present work, an integrated process planning and scheduling model encapsulating the salient features of outsourcing strategy has been proposed. The paper emphasizes on the role of outsourcing strategy in optimizing the performance of enterprises in rapidly changing environment. In the present work authors have proposed an artificial immune system based AIS-FLC algorithm embedded with the fuzzy logic controller to solve the complex problem prevailing under such scenario, while simultaneously optimizing the performance. The authors have shown the efficacy of the proposed algorithm by comparing the results with other random search methods

    Soft computing applied to optimization, computer vision and medicine

    Get PDF
    Artificial intelligence has permeated almost every area of life in modern society, and its significance continues to grow. As a result, in recent years, Soft Computing has emerged as a powerful set of methodologies that propose innovative and robust solutions to a variety of complex problems. Soft Computing methods, because of their broad range of application, have the potential to significantly improve human living conditions. The motivation for the present research emerged from this background and possibility. This research aims to accomplish two main objectives: On the one hand, it endeavors to bridge the gap between Soft Computing techniques and their application to intricate problems. On the other hand, it explores the hypothetical benefits of Soft Computing methodologies as novel effective tools for such problems. This thesis synthesizes the results of extensive research on Soft Computing methods and their applications to optimization, Computer Vision, and medicine. This work is composed of several individual projects, which employ classical and new optimization algorithms. The manuscript presented here intends to provide an overview of the different aspects of Soft Computing methods in order to enable the reader to reach a global understanding of the field. Therefore, this document is assembled as a monograph that summarizes the outcomes of these projects across 12 chapters. The chapters are structured so that they can be read independently. The key focus of this work is the application and design of Soft Computing approaches for solving problems in the following: Block Matching, Pattern Detection, Thresholding, Corner Detection, Template Matching, Circle Detection, Color Segmentation, Leukocyte Detection, and Breast Thermogram Analysis. One of the outcomes presented in this thesis involves the development of two evolutionary approaches for global optimization. These were tested over complex benchmark datasets and showed promising results, thus opening the debate for future applications. Moreover, the applications for Computer Vision and medicine presented in this work have highlighted the utility of different Soft Computing methodologies in the solution of problems in such subjects. A milestone in this area is the translation of the Computer Vision and medical issues into optimization problems. Additionally, this work also strives to provide tools for combating public health issues by expanding the concepts to automated detection and diagnosis aid for pathologies such as Leukemia and breast cancer. The application of Soft Computing techniques in this field has attracted great interest worldwide due to the exponential growth of these diseases. Lastly, the use of Fuzzy Logic, Artificial Neural Networks, and Expert Systems in many everyday domestic appliances, such as washing machines, cookers, and refrigerators is now a reality. Many other industrial and commercial applications of Soft Computing have also been integrated into everyday use, and this is expected to increase within the next decade. Therefore, the research conducted here contributes an important piece for expanding these developments. The applications presented in this work are intended to serve as technological tools that can then be used in the development of new devices

    A new holistic systems approach to the design of heat treated alloy steels using a biologically inspired multi-objective optimisation algorithm

    Get PDF
    The primary objective of this paper is to introduce a new holistic approach to the design of alloy steels based on a biologically inspired multi-objective immune optimisation algorithm. To this aim, a modified population adaptive based immune algorithm (PAIA2) and a multi-stage optimisation procedure are introduced, which facilitate a systematic and integrated fuzzy knowledge extraction process. The extracted (interpretable) fuzzy models are able to fully describe the mechanical properties of the investigated alloy steels. With such knowledge in hand, locating the ‘best’ processing parameters and the corresponding chemical compositions to achieve certain pre-defined mechanical properties of steels is possible. The research has also enabled to unravel the power of multi-objective optimisation (MOP) for automating and simplifying the design of the heat treated alloy steels and hence to achieve ‘right-first-time’ production
    corecore