6,833 research outputs found

    Blockchain technology into the logistics supply chain implementation effectiveness

    Get PDF
    Technologies currently have a tremendous impact on all spheres of economy, business and a state. They integrally change peopleโ€™s conception of trade, property, and market entities interaction. Artificial intelligence, additive, informationommunication, green technologies, biotechnologies, and blockchain technologies development and implementation confirm their leadership importance and inevitability in relation to the activities traditional approaches. In the modern world only the companies with flexible vision, equipment and technologies able to instantly reform, adapt to new conditions and challenges, will benefit. The point at issue is Industry 4.0 as a new technological mode emergence

    The intersection of blockchain technology and circular economy in the agri-food sector

    Get PDF
    A transition towards a circular economy within the agri-food sector requires the improvement of efficiency in resource utilization, the prevention of food loss or waste, whilst adopting regenerative agricultural practices. In addition to the technical challenges, the agri-food industry needs to address the food safety concerns resulting from biomass recycling processes. Increasingly, blockchain technology is gaining traction, moving towards more sustainable and precision agriculture. The blockchain is a decentralized, immutable, and shared database that records the provenance of digital assets, making it a suitable platform for traceability and food supply chain management. Despite its growing importance, the existing literature regarding these themes and the empirical evidence of blockchain-based solutions for a circular economy is rather fragmented. This paper offers a scoping review regarding the role of blockchain technology in the transition towards a circular food system. A total of 44 papers published in peer-reviewed journals were reviewed to identify new scientific insights into the application of blockchains within the agricultural sector. The results indicate that blockchain technology has a great potential in reducing food loss through optimized eco-efficiency (e.g., digitalization and integration with the Internet of Things) and by alleviating asymmetric information (by increasing transparency and reducing dependence on intermediaries). However, in the case of recycling efficiency, despite its potential, there remains a paucity of evidence regarding the use of blockchain technology in improving the residual valorization processes. Furthermore, there is a stream of literature focusing on the ability of blockchain-enabled traceability (e.g., for organic production or supply chain management). Yet, the role of blockchain traceability in the monitoring of risks from recycled biomass and the reporting of the sustainability performance in the supply chain has received scant attention within research literature. These results provide insights for supply chain management operations with the view of shifting towards a circular economy whilst also suggesting an agenda for future research areas

    The Application of Industry 4.0 Technologies in Sustainable Logistics: A Systematic Literature Review (2012-2020) to Explore Future Research Opportunities

    Get PDF
    Nowadays, the market competition becomes increasingly fierce due to diversified customer needs, stringent environmental requirements, and global competitors. One of the most important factors for companies to not only survive but also thrive in todayโ€™s competitive market is their logistics performance. This paper aims, through a systematic literature analysis of 115 papers from 2012 to 2020, at presenting quantitative insights and comprehensive overviews of the current and future research landscapes of sustainable logistics in the Industry 4.0 era. The results show that Industry 4.0 technologies provide opportunities for improving the economic efficiency, environmental performance, and social impact of logistics sectors. However, several challenges arise with this technological transformation, i.e., trade-offs among different sustainability indicators, unclear benefits, lifecycle environmental impact, inequity issues, and technology maturity. Thus, to better tackle the current research gaps, future suggestions are given to focus on the balance among different sustainability indicators through the entire lifecycle, human-centric technological transformation, system integration and digital twin, semi-autonomous transportation solutions, smart reverse logistics, and so forth

    How Blockchain Facilitates the Transition toward Circular Economy in the Food Chain?

    Get PDF
    Food loss and waste are two of the many problems that modern society is facing. To date, among many solutions, the circular economy is the one prevailing. A successful transition toward a circular economy (CE) requires the food sector to overcome the challenges of today's complex food supply chains such as information asymmetry, poor cooperation among stakeholders, and concerns about food safety. Blockchain, a form of distributed ledger technology, has been progressively gaining traction in supply chains in areas like data management, certifying product provenance and tracking products. Despite its importance, knowledge around the potential of the blockchain technology in facilitating the transition towards a circular economy in the agri-food sector is fragmented. This review provides evidence-based insights into the blockchain implementations in the food supply chains and the implications for CE. Our findings indicated four major areas that blockchain could accelerate CE in the agri-food sector: improving data utility; supply chain management efficacy; enhanced eco-efficiency; and superior traceability

    Focusing on the case analysis of advanced smart ports

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ํ–‰์ •๋Œ€ํ•™์› ๊ธ€๋กœ๋ฒŒํ–‰์ •์ „๊ณต, 2023. 2. Lee, Soo-young.๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ตœ๊ทผ ๊ฐ๊ด‘๋ฐ›๊ณ  ์žˆ๋Š” ์Šค๋งˆํŠธ ํ•ญ๋งŒ์˜ ๊ฐœ๋…๊ณผ ํ•ญ๋งŒ ๊ฒฝ์Ÿ๋ ฅ๊ณผ์˜ ๊ด€๊ณ„๋ฅผ ๊ณ ์ฐฐํ•ด ๋ณด๊ณ , ์„ ์ง„ ์Šค๋งˆํŠธ ํ•ญ๋งŒ์— ๋Œ€ํ•œ ๋‹ค๊ฐ์ ์ธ ๋ถ„์„์„ ํ†ตํ•ด ์šฐ๋ฆฌ๋‚˜๋ผ ์Šค๋งˆํŠธ ํ•ญ๋งŒ ๋ฐœ์ „ ๋ฐฉํ–ฅ์— ๋Œ€ํ•œ ์‹œ์‚ฌ์ ์„ ๋„์ถœํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ์ด๋ฅผ ์œ„ํ•ด A. Molavi ์™ธ์˜ ์—ฐ๊ตฌ์—์„œ ํ™•๋ฆฝ๋œ ์Šค๋งˆํŠธ ํ•ญ๋งŒ ํ‰๊ฐ€ ์ฒ™๋„์˜ 4๊ฐ€์ง€ ์ธก๋ฉด, ์šด์˜์ธก๋ฉด(Operation), ํ™˜๊ฒฝ์ธก๋ฉด(Environment), ์—๋„ˆ์ง€ ์ธก๋ฉด(Energy), ๊ทธ๋ฆฌ๊ณ  ์•ˆ์ „๊ณผ ๋ณด์•ˆ ์ธก๋ฉด(Safety & Security)์˜ ๋ถ„์„ํ‹€์„ ํ™œ์šฉํ•˜์—ฌ ์Šค๋งˆํŠธ ํ•ญ๋งŒ ๊ฐœ๋ฐœ๊ณผ ๋ฐœ์ „์— ๊ฐ€์žฅ ์•ž์„  ๋„ค๋œ๋ž€๋“œ์˜ ๋กœํ…Œ๋ฅด๋‹ด ํ•ญ๋งŒ๊ณผ ๋…์ผ์˜ ํ•จ๋ถ€๋ฅดํฌ ํ•ญ๋งŒ์˜ ์ •์ฑ… ๋ถ„์„์„ ์‹œ๋„ํ•˜์˜€๋‹ค. A. Molavi ์™ธ์˜ ์—ฐ๊ตฌ๋Š” ์ธก์ • ๊ฐ€๋Šฅํ•œ ์Šค๋งˆํŠธํ™” ์ง€์ˆ˜๋ฅผ ๋ฐœ์ „์‹œ์ผœ ๊ฐ ํ•ญ๋งŒ์˜ ์Šค๋งˆํŠธํ™” ์ •๋„๋ฅผ ๊ฐ€๋Š ํ•˜๊ณ  ์žฅ๋‹จ์ ์„ ํŒŒ์•…ํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•˜๊ธฐ ์œ„ํ•œ ์ทจ์ง€์—์„œ ๊ฐœ๋ฐœ๋˜์—ˆ๋‹ค. ํ•˜์ง€๋งŒ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์Šค๋งˆํŠธ ํ•ญ๋งŒ์˜ ํ‰๊ฐ€ ์ฒ™๋„๋ฅผ ํ™œ์šฉํ•˜๋˜ ์งˆ์ ์ธ ๋ถ„์„์œผ๋กœ ์ ‘๊ทผํ•˜์—ฌ ์ •์ฑ… ํ™œ์šฉ ์ธก๋ฉด์—์„œ ์œ ์šฉํ•œ ์‹œ์‚ฌ์ ์„ ๋„์ถœํ•˜๋Š”๋ฐ ๋ชฉ์ ์„ ๋‘์—ˆ๋‹ค. ๋˜ํ•œ ๋™์ผํ•œ ํ‹€์„ ํ™œ์šฉํ•˜์—ฌ ํ˜„์žฌ ๋ถ€์‚ฐ ์ปจํ…Œ์ด๋„ˆ ํ„ฐ๋ฏธ๋„์˜ ์Šค๋งˆํŠธ ํ•ญ๋งŒ ๋ฐœ์ „ ๊ณ„ํš์„ ๋ถ„์„ํ•˜๊ณ  ๋ฐœ์ „๋ฐฉํ–ฅ ์„ค์ •์— ๋„์›€์„ ์ฃผ๊ณ ์ž ํ•˜์˜€๋‹ค. ์šฐ์„  ์šด์˜ ์ธก๋ฉด์—์„œ ์„ ์ง„ ์Šค๋งˆํŠธ ํ•ญ๋งŒ๋“ค์€ ํ•ญ๋งŒ ๋‚ด ํ•˜์—ญ ์ „ ๊ณผ์ •์˜ ์™„์ „ ์ž๋™ํ™”๋ฅผ ๋‹ฌ์„ฑํ•˜์˜€๊ณ , ์ด์— ๊ทธ์น˜์ง€ ์•Š๊ณ  ํ•ญ๋งŒ ๋‚ด ๋ชจ๋“  ๊ณผ์ •์„ 4์ฐจ ์‚ฐ์—…ํ˜๋ช…์˜ ์ฒจ๋‹จ ๊ธฐ์ˆ ๋“ค์„ ํ™œ์šฉํ•˜์—ฌ ๋ฌด์ธํ™”์™€ ํšจ์œจํ™”๋ฅผ ์ถ”๊ตฌํ•˜์˜€๋‹ค. ์ด ๊ณผ์ •์—์„œ A.I, IoT, ๋ธ”๋ก์ฒด์ธ ๋“ฑ 4์ฐจ ์‚ฐ์—…ํ˜๋ช…์˜ ํ•ต์‹ฌ ๊ธฐ์ˆ ๋“ค์„ ์ ๊ทน ํ™œ์šฉํ•˜์—ฌ ํ•ญ๋งŒ์˜ ์ „์ฒด์ ์ธ ๋ชจ์Šต์„ ๋ณ€ํ™”์‹œ์ผœ ๊ฐ€๊ณ  ์žˆ์œผ๋ฉฐ, ๋น„์šฉ์ ˆ๊ฐ๊ณผ ์ƒ์‚ฐ์„ฑ ์ฆ๋Œ€ ๋“ฑ ์ง์ ‘์ ์ธ ํšจ๊ณผ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ๊ธ€๋กœ๋ฒŒ ๋ฌผ๋ฅ˜์˜ ํ•ต์‹ฌ ๊ตฌ์‹ฌ์ ์œผ๋กœ์จ ์Šค๋งˆํŠธ ํ•ญ๋งŒ์˜ ๊ฐ€๋Šฅ์„ฑ์„ ๋ฐœ์ „์‹œ์ผœ ๋‚˜๊ฐ€๊ณ  ์žˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ํ•ญ๋งŒ ๊ฒฝ์Ÿ๋ ฅ ํ–ฅ์ƒ์€ ๋ฌผ๋ก  ๋ฌผ๋ฅ˜ ํฌํ„ธ๋กœ์จ์˜ ์ง€์œ„๋ฅผ ์„ ์ ํ•˜๊ธฐ ์œ„ํ•œ ๊ฒฝ์Ÿ๋„ ์‹ฌํ™”๋˜๊ณ  ์žˆ๋‹ค. ํ™˜๊ฒฝ ์ธก๋ฉด์—์„œ๋Š” ์นœํ™˜๊ฒฝ ํ•ญ๋งŒ์— ๋Œ€ํ•œ ๊ด€์‹ฌ์ด ์ฆ๋Œ€๋˜๊ณ  ์žˆ๋‹ค. ํ•ญ๋งŒ์€ ๋” ์ด์ƒ ๋„์‹œ์™€ ๋ถ„๋ฆฌ๋˜์–ด ์กด์žฌํ•˜๋Š” ๋…๋ฆฝ๋œ ์˜์—ญ์ด ์•„๋‹Œ, ์ธ์ ‘ ๋„์‹œ ์ฃผ๋ฏผ๋“ค๊ณผ ์ƒํ˜ธ ์˜ํ–ฅ์„ ์ฃผ๊ณ ๋ฐ›์œผ๋ฉฐ ๋ฐœ์ „ํ•˜๋Š” ํ˜ธํ˜œ์ ์ธ ๊ด€๊ณ„๋ฅผ ๊ตฌ์ถ•ํ•ด์•ผ ํ•œ๋‹ค๋Š”๋ฐ ๊ณต๊ฐ๋Œ€๊ฐ€ ํ˜•์„ฑ๋˜๊ณ  ์žˆ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ๊ทธ๋™์•ˆ ํ•ญ๋งŒ ํ™œ๋™์„ ํ†ตํ•ด ์•ผ๊ธฐ๋˜์—ˆ๋˜ ํ™˜๊ฒฝ ์˜ค์—ผ ๋ฌธ์ œ๋ฅผ ์ค„์ด๊ณ  ์ง€์—ญ์‚ฌํšŒ์— ๊ธฐ์—ฌํ•˜๊ธฐ ์œ„ํ•œ ๋…ธ๋ ฅ๋“ค์ด ํ™œ๋ฐœํžˆ ์ง„ํ–‰๋˜๊ณ  ์žˆ๋‹ค. ์ „๋ ฅ์— ๊ธฐ๋ฐ˜ํ•œ ์นœํ™˜๊ฒฝ ํ•˜์—ญ์žฅ๋น„๋กœ ๋Œ€์ฒดํ•˜๊ณ , ์„ ๋ฐ•์˜ ์—ฐ๋ฃŒ๋ฅผ ์นœํ™˜๊ฒฝ ์—ฐ๋ฃŒ๋กœ ์ „ํ™˜ํ•˜๋Š” ๋…ธ๋ ฅ์ด ์ง„ํ–‰ ์ค‘์ด๋‹ค. ํ•ญ๋งŒ ๋‚ด ์œ ํœด๋ถ€์ง€๋ฅผ ํ™œ์šฉํ•ด ์‹ ์žฌ์ƒ์—๋„ˆ์ง€๋ฅผ ๋ฐœ์ „ํ•˜๊ณ  ์ธ๊ทผ ์ง€์—ญ์— ๊ณต๊ธ‰ํ•˜๋Š” ๋ฐฉ์•ˆ๊ณผ, ํ•ญ๋งŒ์˜ ํ™˜๊ฒฝ ๋ฌธ์ œ๋ฅผ IoT ๊ธฐ์ˆ ์„ ํ™œ์šฉํ•˜์—ฌ ์‹ค์‹œ๊ฐ„์œผ๋กœ ๊ฐ์‹œํ•˜๊ณ  ๊ณต์œ ํ•˜๋Š” ์‹œ์Šคํ…œ์„ ๊ตฌ์ถ•ํ•˜์—ฌ ํ•ญ๋งŒ์˜ ์ง€์† ๊ฐ€๋Šฅํ•œ ๋ฐœ์ „์„ ์˜๋„ํ•˜๋ฉฐ ํƒ„์†Œ ์ค‘๋ฆฝ ์‚ฌํšŒ๋กœ์˜ ์ง„์ „์— ์ค‘์š”ํ•œ ์—ญํ• ์„ ์ž์ฒ˜ํ•˜๊ณ  ์žˆ๋‹ค. ์—๋„ˆ์ง€ ์ธก๋ฉด์—์„œ๋Š” ์Šค๋งˆํŠธ ํ•ญ๋งŒ์ด ๋ฏธ๋ž˜ ์ˆ˜์†Œ ์‚ฌํšŒ์˜ ํ•ต์‹ฌ ๊ณต๊ธ‰ ๊ธฐ์ง€๊ฐ€ ๋  ์ „๋ง์ด๋‹ค. ํ•ด์ƒ ๋ฌผ๋ฅ˜์™€ ์œก์ƒ ๋ฌผ๋ฅ˜๊ฐ€ ๊ฒฐํ•ฉ๋˜๋Š” ๊ธฐ๋Šฅ์  ์ด์ ์„ ํ™œ์šฉํ•˜์—ฌ ์ˆ˜์†Œ์˜ ์ƒ์‚ฐ๊ณผ ์ €์žฅ, ๋ถ„๋ฐฐ ๋“ฑ ์ˆ˜์†Œ ๊ฒฝ์ œ์˜ ํ•ต์‹ฌ ์ธํ”„๋ผ๋ฅผ ํ•ญ๋งŒ ๋‚ด ๊ตฌ์ถ•ํ•˜๊ณ  ํ•ญ๋งŒ ๊ธฐ๋Šฅ๊ณผ์˜ ๊ฒฐํ•ฉ์„ ์‹œ๋„ํ•˜๊ณ  ์žˆ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ์„ ์ง„ ํ•ญ๋งŒ๋“ค์€ ๋Œ€๊ทœ๋ชจ ํŒŒ์ดํ”„ ๋ผ์ธ์„ ๊ฑด์„คํ•˜๋Š” ํ”„๋กœ์ ํŠธ๋“ค์„ ์ง„ํ–‰ํ•˜๋ฉฐ ๋ฏธ๋ž˜๋ฅผ ์ค€๋น„ํ•˜๊ณ  ์žˆ๋‹ค. ์•ˆ์ „๊ณผ ๋ณด์•ˆ ์ธก๋ฉด์—์„œ๋Š” ํ•ญ๋งŒ์ด ์ฒจ๋‹จ ๊ธฐ์ˆ  ํ™œ์šฉ์˜ ๊ฒฝ์—ฐ์žฅ์ด ๋˜๊ณ  ์žˆ๋‹ค. ํ•ญ๊ณต ๋ฐ ํ•ด์ƒ, ์ˆ˜์ค‘ ๋“œ๋ก  ๋“ฑ ์ฒจ๋‹จ ์žฅ๋น„๋“ค์„ ํ™œ์šฉํ•˜์—ฌ ๋“œ๋„“์€ ํ•ญ๋งŒ์„ ๊ฐ€์ƒ ํ˜„์‹ค์„ธ๊ณ„์ธ ํŠธ์œˆ ํƒ€์›Œ์— ์ด์‹ํ•˜๊ณ  ์ธ๊ณต์ง€๋Šฅ์— ์˜ํ•œ ์‹ค์‹œ๊ฐ„ ๊ด€๋ฆฌ ๊ฐ๋…์ด ๊ฐ€๋Šฅํ•œ ์‹œ์Šคํ…œ์ด ๊ตฌ์ถ•๋˜๊ณ  ์žˆ๋‹ค. ํ•ญ๋งŒ ๋‚ด ํ•˜์—ญ์ž‘์—…์˜ ๋ฌด์ธํ™”๋Š” ์•ˆ์ „์‚ฌ๊ณ ์˜ ์œ„ํ—˜์„ ํš๊ธฐ์ ์œผ๋กœ ์ค„์ผ ์ˆ˜ ์žˆ์„ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ, ์‚ฌ๊ฐ ์ง€๋Œ€๊ฐ€ ์—†๋Š” ๊ด€๋ฆฌ ๊ฐ๋…๋„ ๊ฐ€๋Šฅํ•ด์ ธ ํ•ญ๋งŒ ๋‚ด ์žฌ๋‚œ์‚ฌ๊ณ ์™€ ๋ฐ€์ž…๊ตญ ๋“ฑ์˜ ๋ฌธ์ œ๋ฅผ ๊ทผ๋ณธ์ ์œผ๋กœ ๋ณ€ํ™”์‹œํ‚ฌ ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋˜๊ณ  ์žˆ๋‹ค. ํ•˜์ง€๋งŒ ์„ ์ง„ ์Šค๋งˆํŠธ ํ•ญ๋งŒ์—์„œ ์ถ”๊ตฌํ•˜๋Š” ๊ทผ๋ณธ์ ์ธ ๋ฐฉํ–ฅ์€ ์„ธ๊ณ„ ๋ฌผ๋ฅ˜์˜ ํ•ต์‹ฌ ํฌํ„ธ์„ ๊ตฌ์ถ•ํ•˜๋Š” ๊ฒƒ์ด๋ฉฐ ์ด๋ฅผ ์œ„ํ•ด ํ•ญ๋งŒ์˜ ์—ญํ• ์€ ๊ธฐ์กด์˜ ์ง€์—ญ์ ์ธ ํ•œ๊ณ„๋ฅผ ๋„˜์–ด ๊ธฐ๋Šฅ์ ์œผ๋กœ ๊ทธ๋ฆฌ๊ณ  ๋ฌผ๋ฆฌ์ ์œผ๋กœ ํŒฝ์ฐฝํ•˜๊ณ  ์žˆ๋‹ค. ์šฐ๋ฆฌ๋‚˜๋ผ์˜ ๊ฒฝ์šฐ ์ผ์ฐ์ด ์ž๋™ํ™” ํ•ญ๋งŒ์˜ ๋ฐœ์ „์„ ์‹œ์ž‘ํ•œ ์œ ๋Ÿฝ ํ•ญ๋งŒ์€ ๋ฌผ๋ก  ์ธ๊ทผ ์ค‘๊ตญ๊ณผ ์‹ฑ๊ฐ€ํฌ๋ฅด์˜ ์ž๋™ํ™” ํ•ญ๋งŒ๊ณผ ๋น„๊ตํ•ด๋„ ๋’ค์ณ์ง€๊ณ  ์žˆ๋Š” ๊ฒƒ์ด ํ˜„์‹ค์ด๋‹ค. ์ด๋ฅผ ๋งŒํšŒํ•˜๊ธฐ ์œ„ํ•ด ์ค‘์•™ ์ •๋ถ€ ์ฐจ์›์—์„œ ์Šค๋งˆํŠธ ํ•ด์ƒ๋ฌผ๋ฅ˜์ฒด๊ณ„ ๊ตฌ์ถ• ์ „๋žต์„ ์ˆ˜๋ฆฝํ•˜๊ณ  2030๋…„ ์Šค๋งˆํŠธ ํ•ญ๋งŒ์˜ ๋ณธ๊ฒฉ์ ์ธ ์šด์˜์„ ๊ณ„ํšํ•˜๊ณ  ์žˆ๋‹ค. ํ•˜์ง€๋งŒ ๋ณธ ๊ณ„ํš์€ ์ „๋ฐ˜์ ์ธ ๋ฌผ๋ฅ˜ ๊ธฐ๋Šฅ ์ค‘ ํ•˜์œ„ ์š”์†Œ๋กœ ์Šค๋งˆํŠธ ํ•ญ๋งŒ์„ ์ธ์‹ํ•˜๊ณ  ์žˆ์œผ๋ฉฐ, ์ด๋Š” ์Šค๋งˆํŠธ ํ•ญ๋งŒ์„ ์ž๋™ํ™” ํ•ญ๋งŒ์ด๋ผ๋Š” ์ข์€ ์ธก๋ฉด์—์„œ๋งŒ ๋ฐ”๋ผ๋ณด๊ณ  ์žˆ๋Š” ๊ฒƒ์œผ๋กœ, ํ•ญ๋งŒ์˜ ๋ฏธ๋ž˜ ์ž ์žฌ๋ ฅ์— ๋Œ€ํ•œ ์„ ์ง„ ํ•ญ๋งŒ๋“ค์˜ ์ธ์‹๊ณผ๋Š” ํฐ ์ฐจ์ด๊ฐ€ ์žˆ๋‹ค๊ณ  ํ•˜๊ฒ ๋‹ค. ๋˜ํ•œ ์Šค๋งˆํŠธ ํ•ญ๋งŒ์˜ ๋ฐœ์ „ ๊ณผ์ •์—์„œ ๋ฏผ๊ฐ„ ๊ธฐ์—…๊ณผ ํ•ญ๋งŒ ์ดํ•ด๊ด€๊ณ„์ž๋“ค์ด ์ ๊ทน์ ์œผ๋กœ ์ฐธ์—ฌํ•˜๊ณ  ํ˜‘๋ ฅํ•˜์—ฌ ์Šค๋งˆํŠธ ํ•ญ๋งŒ์˜ ๋ชจ์Šต์„ ๊ทธ๋ ค๊ฐ€๋Š” ์„ ์ง„ ํ•ญ๋งŒ๊ณผ๋Š” ๋‹ฌ๋ฆฌ ์šฐ๋ฆฌ๋‚˜๋ผ์˜ ๊ฒฝ์šฐ ์—ฌ์ „ํžˆ ์ •๋ถ€ ์ฃผ๋„ ๋ฐœ์ „ ๋ฐฉ์‹์„ ๊ณ ์ˆ˜ํ•˜๊ณ  ์žˆ์œผ๋ฉฐ, ๊ฐ€์žฅ ์ฃผ๋„์ ์ธ ์—ญํ• ์„ ํ•ด์•ผ ํ•  ํ•ญ๋งŒ ๊ณต์‚ฌ๋“ค์˜ ์—ญํ• ์ด ๋ฏธ๋ฏธํ•œ ๊ฒƒ์€ ํ•œ๊ณ„๋ผ๊ณ  ํ•˜๊ฒ ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ํ–ฅํ›„ ํƒ„์†Œ ์ค‘๋ฆฝ ์‚ฌํšŒ๋กœ์˜ ์ดํ–‰์˜๋ฌด ๋“ฑ ํ™˜๊ฒฝ์ ์ธ ๋ฌธ์ œ์™€ ์นœํ™˜๊ฒฝ ์—๋„ˆ์ง€๋กœ์˜ ์ „ํ™˜์ด ์ค‘์š”์‹œ๋˜๊ณ  ์žˆ๋Š” ์‹œ์ ์—์„œ ์ด์— ๋Œ€ํ•œ ๊ทผ๋ณธ์ ์ธ ์ „ํ™˜๊ณ„ํš์ด๋‚˜ ํ•ญ๋งŒ์˜ ์ƒˆ๋กœ์šด ์—ญํ• ์— ๋Œ€ํ•œ ๊ณ ๋ฏผ์ด ๋ถ€์กฑํ•œ ๊ฒƒ๋„ ๋น„๊ต ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด ๋„์ถœํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์œ ๋Ÿฝ์˜ ํ•ญ๋งŒ๋“ค๊ณผ๋Š” ๋‹ฌ๋ฆฌ ์ˆ˜์†Œ ๊ฒฝ์ œ๋กœ์˜ ์ดํ–‰์— ์žˆ์–ด ํ•ญ๋งŒ์˜ ํ•ต์‹ฌ์  ์—ญํ• ์ด ๋น ์ ธ ์žˆ๋‹ค๋Š” ๊ฒƒ์€ ์Šค๋งˆํŠธ ํ•ญ๋งŒ์— ๋Œ€ํ•œ ์ธ์‹ ๋ถ€์กฑ์—์„œ ๋น„๋กฏ๋œ ๊ฒƒ์œผ๋กœ ๋ณด์ด๋ฉฐ ์ด์— ๋Œ€ํ•œ ์ •์ฑ…์  ๊ฐœ์„ ์ด ํ•„์š”ํ•œ ๊ฒƒ์œผ๋กœ ๋ณด์ธ๋‹ค.This study examines the relationship between the concept of smart ports and port competitiveness, which have recently been in the spotlight, and attempts to derive implications for Korea's smart port development direction through various analysis of advanced smart ports. To this end, this research attempted to analyze the policies of Rotterdam Port in the Netherlands and Hamburg Port in Germany, which are most advanced in smart port development and development, using the analysis framework of four smart port evaluation measures established in A. Molavi et al. In terms of operation, advanced smart ports achieved complete automation of the entire loading and unloading process in the port, and not only this, but all processes in the port were pursued for unmanned and efficient use of the advanced technologies of the 4th Industrial Revolution. In terms of the environment, interest in eco-friendly ports is increasing. There is a consensus that ports should no longer be independent areas that exist separately from cities, but should establish reciprocal relationships that interact and develop with residents of neighboring cities. In terms of energy, smart ports are expected to become a key supply base for the future hydrogen society. Taking advantage of the functional advantages of combining marine logistics and land logistics, the core infrastructure of the hydrogen economy, such as hydrogen production, storage, and distribution, is built in ports and attempted to combine them with port functions. In terms of safety and security, ports are becoming a competition for the use of advanced technology. Using high-tech equipment such as aviation, sea, and underwater drones, a system that allows real-time management and supervision by artificial intelligence is being established by transplanting a wide port into a virtual reality twin tower. In the case of Korea, the reality is that it is lagging behind not only European ports that started the development of automated ports early but also automated ports in neighboring China and Singapore. To make up for this, the central government has established a "smart maritime logistics system construction strategy" and plans to operate smart ports in earnest in 2030. However, this plan recognizes smart ports as a sub-factor of the overall logistics function, which only looks at smart ports in the narrow aspect of automated ports, which is very different from advanced ports' perceptions of the future potential of ports. In addition, unlike advanced ports in which private companies and port stakeholders actively participate and cooperate in the development of smart ports, Korea still adheres to the government-led development method, and the role of port authorities to play the most leading role is insignificant. In addition, at a time when environmental problems such as the obligation to transition to a carbon-neutral society in the future and the transition to eco-friendly energy are becoming important, this comparative study was able to derive the lack of concern about the fundamental transition plan or the new role of ports. Unlike ports in Europe, the absence of a key role in the transition to a hydrogen economy seems to stem from a lack of awareness of smart ports, and policy improvements are needed.Chapter 1. Introduction ๏ผ‘ 1.1. Study Background ๏ผ‘ 1.2. Scope and Method of Study ๏ผ’ Chapter 2. Theoretical Discussions and Prior Study Reviews ๏ผ” 2.1. Theoretical discussion of smart ports ๏ผ” 2.1.1. Significance of Ports ๏ผ” 2.1.2. Development of Ports ๏ผ• 2.1.3. Prior Study of Smart Ports ๏ผ– 2.1.4. Smart Port Index (SPI) ๏ผ™ 2.2. Theoretical discussion of port competitiveness ๏ผ‘๏ผ‘ 2.2.1 The Concept of Port Competitiveness ๏ผ‘๏ผ‘ 2.2.2. A Prior Study on Port Competitiveness ๏ผ‘๏ผ“ 2.2.3. Port Competitiveness and Performance Evaluation ๏ผ‘๏ผ• 2.3. The relationship between smart ports and port competitiveness ๏ผ‘๏ผ— 2.3.1. Smart Port Components and Port Competitiveness ๏ผ‘๏ผ— 2.3.2. Trends in Smart Port Development ๏ผ’๏ผ“ 2.4. Results of previous study review ๏ผ’๏ผ— 3.1. Analysis Targets and Data ๏ผ’๏ผ˜ 3.2. Analytical Model ๏ผ’๏ผ™ Chapter 3. Case Analysis ๏ผ“๏ผ’ 3.1. Port of Rotterdam (Netherlands) ๏ผ“๏ผ’ 3.1.1. Background and Status of Smart Port Introduction ๏ผ“๏ผ’ 3.1.2. Operational Aspects of Smart Port ๏ผ“๏ผ” 3.1.3. Environmental Aspects of Smart Port ๏ผ“๏ผ— 3.1.4. Energy Aspects of Smart Port ๏ผ“๏ผ™ 3.1.5. Safety and Security Aspects of Smart Port ๏ผ”๏ผ‘ 3.1.6. Implications ๏ผ”๏ผ“ 3.2. Port of Hamburg (Germany) ๏ผ”๏ผ• 3.2.1. Background and Status of Smart Port Introduction ๏ผ”๏ผ• 3.2.2. Operational Aspects of Smart Port ๏ผ”๏ผ˜ 3.2.3. Environmental Aspects of Smart Port ๏ผ•๏ผ‘ 3.2.4. Energy Aspects of Smart Port ๏ผ•๏ผ“ 3.2.5. Safety and Security Aspects of Smart Port ๏ผ•๏ผ• 3.2.5. Implications ๏ผ•๏ผ– 3.3. Port of Busan (S.Korea) ๏ผ•๏ผ˜ 3.3.1. Background and Status of Smart Port Introduction ๏ผ•๏ผ˜ 3.3.2. Operational Aspects of Smart Port ๏ผ–๏ผ 3.3.3. Environmental Aspects of Smart Port ๏ผ–๏ผ’ 3.3.4. Energy Aspects of Smart Port ๏ผ–๏ผ“ 3.3.5. Safety and Security Aspects of Smart Port ๏ผ–๏ผ” Chapter 4. Conclusion ๏ผ–๏ผ– 4.1. Results of Research ๏ผ–๏ผ– 4.2. Policy Implications ๏ผ—๏ผ 4.3. Limitations of Research ๏ผ—๏ผ” Bibliography ๏ผ—๏ผ– Abstract in Korean ๏ผ˜๏ผ’์„

    Industry 4.0 and sustainability: Towards conceptualization and theory

    Get PDF
    Both Industry 4.0 and sustainability have gained momentum in the academic, managerial and policy debate. Despite the relevance of the topics, the relation between Industry 4.0 and sustainability \u2013 revealed by many authors \u2013 is still unclear; literature is fragmented. This paper seeks to overcome this limit by developing a systematic literature review of 117 peer-reviewed journal articles. After descriptive and content analyses, the work presents a conceptualization and theoretical framework. The paper contributes to both theory and practice by advancing current understanding of Industry 4.0 and sustainability, especially the impact of Industry 4.0 technologies on sustainability practices and performance

    Exploring Cloud Adoption Possibilities for the Manufacturing Sector: A Role of Third-Party Service Providers

    Get PDF
    As the manufacturing sector strides towards digitalization under the influence of Industry 4.0, cloud services have emerged as the new norm, driving change and innovation in this rapidly transforming landscape. This study investigates the possibilities of cloud adoption in the manufacturing sector by developing a conceptual model to identify suitable cloud-based solutions and explores the role of third-party service providers in aiding manufacturers throughout their cloud adoption journey. The research methods consist of a comprehensive literature review of the manufacturing industry, digital transformation, cloud computing, etc., followed by qualitative analyses of industrial benchmarks case studies and an investigation into an application of the developed model to a hypothetical food manufacturing company as an example. This study indicates that cloud adoption can yield substantial benefits in the manufacturing sector, including operational efficiency, cost reduction, and innovation, etc. The study concludes that the developed conceptual model provides a practical framework to identify the most suitable cloud-based solutions during the cloud adoption process in the manufacturing context. In addition, third-party service providers like Capgemini are capable of not only filling the technical gaps but also consulting strategic directions and innovations for their client organizations, hence playing a vital role in driving the industrial digital transformation process. With an extensive mapping of their capabilities, a set of recommendations intended to assist Capgemini in enhancing capabilities and improving competitive performance in the market has been offered

    Logistics and Agri\u2010Food: Digitization to Increase Competitive Advantage and Sustainability. Literature Review and the Case of Italy

    Get PDF
    This paper examines the current challenges faced by logistics with a focus on the agri\u2010food sector. After outlining the context, a review of the literature on the relationship between logistics and strategic management in gaining and increasing competitiveness in the agri\u2010food sector is con-ducted. In particular, the flow of the paper is as follows: after examining the aforementioned managerial problem and its broader repercussions, the paper proceeds to address two main research questions. First, how and by which tools can digitization contribute to improving supply chain management and sustainability in logistics? Second, what are the main managerial and strategic implications and consequences of this for the agri\u2010food sector in terms of efficiency, effectiveness, cost reduction, and supply chain optimization? Finally, the paper presents Italy as a case study, chosen both for its peculiar internal differences in logistical infrastructures and entrepreneurial management between Northern and Southern regions (which could be at least partially overcome with the use of new technologies and frameworks) and for the importance of the agri\u2010food sector for the domestic economy (accounting about 25% of the country\u2019s GDP), on which digitization should have positive effects in terms of value creation and sustainability
    • โ€ฆ
    corecore