59,495 research outputs found

    Microbial β-Glucosidase: sources, production and applications

    Get PDF
    Cellulose is the most abundant biopolymer in biosphere and the major constituent of plant biomass. Cellulose polymer is made up of β-glucose units linked by β-glucosidic bonds. Cellulase is an enzymatic system that catalyzes the hydrolysis of cellulose polymer to glucose monomers. This enzymatic system consists of three individual enzymes namely endoglucanase, exoglucanase and β-glucosidase which act synergistically to degrade cellulose molecules into glucose. Cellulases are produced by bacteria, fungi, plants, and animals and used in many industrial applications such as textile industries, laundry and detergent industries, paper and pulp industry, animal feeds, and biofuels production. β-Glucosidase is a diverse group of enzymes with wide distribution in bacteria, fungi, plants and animals and has the potential to be utilized in various biotechnological processes such as biofuel production, isoflavone hydrolysis, flavor enhancement and alkyl/aryl β-D-glucoside and oligosaccharides synthesis. Thus, there is increased demand of β-glucosidase production from microbial sources under profitable industrial conditions. In this review, β-glucosidase classification, localization, and mechanism of action will be described. Subsequently, the various sources of β-glucosidase for industrial sector will be discussed. Moreover, Fermentation methods and various parameters affecting β-glucosidase production will be highlighted on the light of recent findings of different researchers. Finally, β-glucosidase applications in biofuel production, flavors enhancement, isoflavones hydrolysis, cassava detoxification and oligosaccharide synthesis will be described

    Shortcut Biological Nitrogen Removal (SBNR) in an MFC anode chamber under microaerobic conditions. The effect of C/N ratio and kinetic study

    Get PDF
    In this work, the feasibility of the Shortcut Biological Nitrogen Removal (SBNR) in the anodic chamber of a Microbial Fuel Cell (MFC) was investigated. Thirty day experiments were carried out using synthetic wastewaters with a Total Organic Carbon vs. nitrogen ratio (TOC/N) ranging from 0.1 to 1. Ammonium, nitrite, nitrate, pH, and TOC were daily monitored. Results showed that microaerobic conditions in the anodic chamber favored the development of nitritation reaction, due to oxygen transfer from the cathodic chamber through the membrane. Nitritation was found to depend on TOC/N ratio: at TOC/N equal to 0.1 an ammonium removal efficiency of up to 76% was observed. Once the oxygen supply to the cathodic chamber was stopped, denitritation occurred, favored by an increase of the TOC/N ratio: a nitrite removal of 80.3% was achieved at TOC/N equal to 0.75. The presence of nitrogen species strongly affected the potential of the electrochemical system: in the nitritation step, the Open Circuit Voltage (OCV) decreased from 180 mV to 21 mV with the decrease of the TOC/N ratio in the investigated range. Lower OCV values were observed in the denitritation steps since the organic carbon acted as the energy source for the conversion of nitrite to nitrogen gas. A kinetic analysis was also performed. Monod and Blackman models described the ammonium and the organic carbon removal processes well during the nitritation step, respectively, while Blackman-Blackman fitted experimental results of the denitritation step better

    Controlled Production and Degradation of Selected Biomaterials

    Get PDF
    Předložená disertační práce se zabývá studiem produkce a degradace polymerních materiálů s využitím mikroorganismů. Hlavní pozornost je upřena ke studiu produkce polyesterů bakteriálního původu - polyhydroxyalkanoátů. Tyto materiály jsou akumulovány celou řadou bakterií jako zásobní zdroj uhlíku, energie a redukční síly. Díky svým mechanickým vlastnostem, kterými silně připomínají tradiční syntetické polymery jako jsou polyetylén nebo polypropylén, a také díky své snadné odbouratelnosti v přírodním prostředí, jsou polyhydroxyalkanoáty považovány za ekologickou alternativu k tradičním plastům vyráběným z ropy. Polyhydroxyalkanoáty mají potenciál najít řadu aplikací v průmyslu, zemědělství ale také v medicíně. Významná část předložené práce je zaměřena na produkci polyhydroxyalkanoátů z odpadních substrátů pocházejících především z potravinářských výrob. Testována byla odpadní syrovátka nebo odpadní oleje z různých zdrojů. Právě využití levných odpadních substrátů je strategií, která by mohla přispět ke snížení ceny polyhydroxyalkanoátů a tím usnadnit jejich masové rozšíření. Podle výsledků dosažených v této práci jsou právě odpadní olejové substráty velice perspektivní cestou k ekonomicky rentabilní biotechnologické produkci polyhydroxyalkanoátů. Další část předložené práce se zabývá studiu spojení metabolické role polyhydroxyalkanoátů a stresové odpovědi bakterií. V této práci bylo zjištěno, že expozice bakteriální kultury řízené dávce etanolu nebo peroxidu vodíku významně navýší dosažené výtěžky a to o přibližně 30 %. Po aplikaci výše zmíněných stresových faktorů došlo k aktivaci metabolických drah vedoucí k odbourání stresového faktoru z média. Výsledkem bylo navýšení poměru NAD(P)H/NAD(P)+, což vedlo k částečné inhibici Krebsova cyklu a naopak aktivaci biosyntetické dráhy polyhydroxyalkanoátů. Mimoto došlo k významnému navýšení molekulové hmotnosti výsledných materiálů. Podle těchto výsledků se regulovaná aplikace vhodně zvolených stresových podmínek zdá být zajímavou strategií, která vede nejen k navýšení celkových výtěžků, ale také významnému zlepšení vlastností polymeru. Poslední část disertační práce se zabývala studiem procesu biodegradace polyuretanových materiálů. Polyuretanové eleastomery byly modifikovány rozličnými biopolymery za účelem navýšení jejich biodegradability. Tyto materiály byly posléze vystaveny působení směsné termofilní kultury jako modelového systému, který simuluje přirozené konsorcium bakterií. Přítomnost testovaných materiálů v kultivačním médiu vedla k neobvyklým růstovým charakteristikám bakteriální kultury. V průběhu prvních několika dní byl růst kultury silně inhibován, nicméně po překonání této neobvykle dlouhé lag-fáze došlo k intenzivnímu nárůstu kultury. Hlavní podíl na hmotnostním úbytku testovaných materiálů během experimentů měl samovolný rozpad materiálů, nicméně byl pozorován i vliv bakteriální kultury, kdy míra biotické degradace závisela na použitém modifikačním činidle. Nejvyšší míra biotické degradace byla pozorována u polyuretanového materiálu modifikovaného acetylovanou celulózou. Lag-fáze byla způsobena uvolněním nezreagovaného katalyzátoru (dibutylcínlaurát) a polyolu do kultivačního média. Bakteriální kultura se však po čase dokázala na přítomnost toxických látek v médiu adaptovat nebo je dokázala eliminovat.Proposed dissertation thesis is aimed at the study of production and degradation of polymeric materials using microorganisms. The main attention is given to polyesters of bacterial origin - polyhydroxyalkanoates. These materials are accumulated by a wide variety of bacterial strains which use polyhydroxyalkanoates as a storage of carbon, energy and reducing power. Thanks to their mechanical properties, that are similar to those of traditional synthetic plastics such as polyethelene or polypropylene, and thanks to their biodegradability, polyhydroxyalkanoates are considered to be environmental-friendly alternative to traditional plastics of petrochemical origin. Thus, polyhydroxyalkanoates have many potential applications in industry, agriculture as well as in medicine. Important part of this thesis is focused on production of polyhydroxyalknotes from waste substrates coming from food industry. Among tested substrates was waste cheese whey or waste plant edible oils of different origin. Utilization of cheap waste substrates for polyhydroxyalkanoates production could facilitate economically feasible process of large scale production of polyhydroxyalkanoates. According to the results presented in this thesis, waste oils are very promising substrates for biotechnological production of polyhydroxyalkanoates. Next part of the thesis deals with involvement of polyhydroxyalkanoates into stress response of bacteria. It was observed, that exposition of bacterial culture to controlled dose of ethanol or hydrogen peroxide resulted in significantly enhanced yields (abut 30 %). After stress factors application, particular metabolic pathways involved in stress response were activated in order to endure stress conditions. Subsequently, NAD(P)H/NAD(P)+ ratio increased and, thus, Krebs cycle was partially inhibited whereas polyhydroxyalkanoates synthetic pathway was activated. Moreover, application of stress factors increased molecular weights of polymers. Therefore, strategy based on application of controlled dose of stress not only enhanced polymer yields, but, moreover, improved properties of materials. The last part of thesis describes the investigation of biodegradation of polyurethane elastomeric films modified by various biopolymers in presence of mixed thermophillic culture as a model of natural bacterial consortium. The presence of materials in cultivation medium resulted in delayed but intensive growth of bacterial culture. The unusually long lag-phase was caused by release of un-reacted polyether polyol and tin catalyst from materials. The main part of material degradation was caused by abiotic degradation of elastomeric films, nevertheless, also bacterial culture slightly contributed to material decomposition. The measure of biotic degradation strongly depended on type of used modification agent. The highest tendency to undergo biotic degradation was observed for elastomeric film modified by acetylated cellulose.

    Representation of Dormant and Active Microbial Dynamics for Ecosystem Modeling

    Full text link
    Dormancy is an essential strategy for microorganisms to cope with environmental stress. However, global ecosystem models typically ignore microbial dormancy, resulting in major model uncertainties. To facilitate the consideration of dormancy in these large-scale models, we propose a new microbial physiology component that works for a wide range of substrate availabilities. This new model is based on microbial physiological states and is majorly parameterized with the maximum specific growth and maintenance rates of active microbes and the ratio of dormant to active maintenance rates. A major improvement of our model over extant models is that it can explain the low active microbial fractions commonly observed in undisturbed soils. Our new model shows that the exponentially-increasing respiration from substrate-induced respiration experiments can only be used to determine the maximum specific growth rate and initial active microbial biomass, while the respiration data representing both exponentially-increasing and non-exponentially-increasing phases can robustly determine a range of key parameters including the initial total live biomass, initial active fraction, the maximum specific growth and maintenance rates, and the half-saturation constant. Our new model can be incorporated into existing ecosystem models to account for dormancy in microbially-mediated processes and to provide improved estimates of microbial activities.Comment: 38 pages, 2 Tables, 4 Figure

    Application of COMPOCHIP Microarray to Investigate the Bacterial Communities of Different Composts

    Get PDF
    A microarray spotted with 369 different 16S rRNA gene probes specific to microorganisms involved in the degradation process of organic waste during composting was developed. The microarray was tested with pure cultures, and of the 30,258 individual probe-target hybridization reactions performed, there were only 188 false positive (0.62%) and 22 false negative signals (0.07%). Labeled target DNA was prepared by polymerase chain reaction amplification of 16S rRNA genes using a Cy5-labeled universal bacterial forward primer and a universal reverse primer. The COMPOCHIP microarray was applied to three different compost types (green compost, manure mix compost, and anaerobic digestate compost) of different maturity (2, 8, and 16 weeks), and differences in the microorganisms in the three compost types and maturity stages were observed. Multivariate analysis showed that the bacterial composition of the three composts was different at the beginning of the composting process and became more similar upon maturation. Certain probes (targeting Sphingobacterium, Actinomyces, Xylella/Xanthomonas/ Stenotrophomonas, Microbacterium, Verrucomicrobia, Planctomycetes, Low G + C and Alphaproteobacteria) were more influential in discriminating between different composts. Results from denaturing gradient gel electrophoresis supported those of microarray analysis. This study showed that the COMPOCHIP array is a suitable tool to study bacterial communities in composts

    Isolation, screening and characterization of microorganisms with potential for biofuels production

    Get PDF
    Tese de mestrado. Biologia (Microbiologia Aplicada). Universidade de Lisboa, Faculdade de Ciências, 2012Rapid global population growth has increased the demand for food and energy supply. The limited oil reserves, pollution concerns, global warming and political instability and disagreements, lead to an increased financial support for sustainable and environmental sources of energy, biofuels. In the last decades there is an increasing interest in the development of the bioethanol production from lignocellulosic residues, which do not compete directly with food. However, the low efficient conversion of cellulosic biomass to biofuels hinders its success. Alternative substrates are inulin containing plants, as Jerusalem artichoke, representing a renewable and inexpensive raw material for industry and biofuel production. In this work, the main goal was to search for new microorganisms, with high potential to produce bioethanol, due to the presence of better ethanologenic characteristics or ability to produce relevant hydrolytic enzymatic machinery. From the isolation and screening of 98 novel strains, 7 were selected and further characterized. A preliminary identification was performed using FISH. Three isolates which showed inulinase capacity gave a putative identification as Z. bailii strains, and the best (Talf1) was optimized and characterized for inulinase production. Talf1 enzymatic extract presented maximum activity (8.7 U/ml) at 45 ºC and pH 5.5, and high stability at 30ºC. Talf1 isolate was used in a Consolidated Bioprocessing (CBP) and its enzymatic extract in a Simultaneous Saccharification and Fermentation (SSF) process, for bioethanol production, obtaining an ethanol yield of 45% and 47% from pure inulin; and a yield of 51% and 48% from Jerusalem artichoke juice, respectively. Four selected isolates from strawberry tree fruit (STF) were used in a fermentation assay using STF juice, producing 86 - 100 g/l of ethanol from this raw material, at a very high yield (47-50%). These results show the enormous potential of inulin and Jerusalem artichoke as substrates for bioethanol production and the application of these novel yeasts as ethanol and/or inulinase producers.A exploração de novos recursos energéticos foi crucial para a revolução tecnológica que ocorreu no início do século 19. Já nesse século se conhecia o enorme potencial do álcool como fonte de energia, visto que o primeiro protótipo de motor de ignição foi desenhado para funcionar com este combustível. No início do século 20, a produção de etanol foi substituída pela gasolina, devido ao baixo custo de extração. Os combustíveis fósseis têm sido, desde então, a principal fonte de energia utilizada. O rápido aumento da população tem intensificado a necessidade do aumento de produção alimentar e energética. As limitadas reservas de petróleo, preocupações ambientais, o aquecimento global e a instabilidade política renovaram o interesse e, consequentemente, o apoio financeiro direcionada para o desenvolvimento de fontes renováveis de energia, como os biocombustíveis. Vários tipos de biocombustíveis têm sido estudados, mas apenas dois são produzidos à escala industrial: o biodiesel e o bioetanol. O bioetanol apresenta as melhores qualidades para a sua utilização nos atuais motores, podendo ser utilizado como aditivo na gasolina, sendo por isso, o biocombustível mais utilizado a nível mundial (Antoni et al., 2007). A produção mundial de bioetanol à escala industrial utiliza principalmente duas fontes naturais: Saccharum officinarum (cana-de-açúcar) e Zea mays L. (milho). A cana-de-açúcar é sobretudo utilizada no Brasil, sendo o segundo maior produtor mundial de bioetanol, enquanto o milho é a principal fonte natural utilizada nos E.U.A., o maior produtor mundial. Estes dois países representam 88% da produção global (REN21). Na produção de bioetanol ocorre a fermentação alcoólica dos substratos naturais, diretamente a partir da cana-de-açúcar (que contém principalmente sacarose); para a bioconversão do milho (composto principalmente por amido) há necessidade de um passo prévio de hidrólise enzimática para a sua conversão em açúcares simples. O bioetanol obtido a partir de culturas agrícolas produzidas exclusivamente para esse fim, ocupando assim área cultivável, denomina-se Bioetanol de 1ª Geração (1G). Este tipo de produção levanta questões morais e éticas porque, deste modo, o bioetanol compete diretamente com a produção alimentar (Luo et al., 2009). Para ultrapassar este problema, tem sido proposto a utilização de resíduos lenhocelulósicos, como substratos, para produção de Bioetanol de 2ª Geração (2G). Este bioetanol não compete diretamente com a produção alimentar, apesar de consumir recursos agroindustriais. Atualmente a conversão de biomassa lenhocelulósica em bioetanol é ainda um procedimento caro e de baixa eficiência, sendo economicamente desfavorável a sua aplicação (Gibbons and Hughes, 2009). O principal obstáculo é o custo do pré-tratamento para conversão dos vários polímeros (celulose, hemicelulose, xilano, etc.) em açucares simples (glucose e xilose principalmente) que esta biomassa necessita, quer seja por degradação enzimática (com custos associados de produção de extratos enzimáticos); quer seja a aplicação de métodos químicos, como hidrólise ácida (que para além do seu custo, leva à produção de composto inibidores do crescimento microbiano). Existem vários bioprocessos propostos para a produção em larga escala de 2G nomeadamente a hidrólise separada da fermentação (SHF), em que o passo de hidrólise da biomassa lenhocelulósica antecede a fase de produção de bioetanol; a fermentação e sacarificação simultâneas (SSF), neste caso há a adição exógena de enzimas ou a co-fermentação de biomassa com um microrganismo produtor das enzimas necessárias à conversão dos polímeros nos seus monómeros, disponibilizando assim os açúcares simples para o microrganismo etanologénico os converter em etanol; e o bioprocesso consolidado (CBP), em que a produção de enzimas para a hidrólise enzimática e a produção de etanol ocorrem por ação do mesmo microrganismo (considerado o melhor processo conceptual) (Lynd, 1996). Infelizmente não está descrito nenhum microrganismo que, simultaneamente, seja capaz de produzir a maquinaria enzimática necessária para a hidrólise da biomassa lenhocelulósica e que a produção de etanol atinja valores de rendimento e produtividade economicamente viáveis. Dadas as dificuldades de implementação à escala industrial do 2G e movidos por preocupações ambientais, de utilização de solos cultiváveis e o desequilíbrio atual no ciclo de carbono, levou alguns cientistas a desenvolver o Bioetanol de 3ª Geração (3G). Este bioetanol recorre a microalgas com elevado conteúdo nutritivo para a sua produção. Ao invés de aproveitar resíduos agroindustriais como substrato, as algas são produzidas explorando os recursos hídricos para a produção de biomassa. Desta forma, não há competição com produção alimentar nem área cultivável e não há utilização de recursos agroindustriais. No entanto, o baixo rendimento de produção de biomassa torna este processo, ainda, economicamente inviável à escala industrial (Goh and Lee, 2010). Uma alternativa a estas opções é a utilização de plantas produtoras de inulina, como Helianthus tuberosus (tupinambo), que representam um recurso renovável, barato e abundante para a produção de bioetanol. O tupinambo tem várias características importantes que justificam a sua utilização, nomeadamente a tolerância a frio, à seca, ao vento e a terrenos arenosos e/ou salinos, com uma alta taxa de fertilidade e de resistência a pestes e doenças, não necessitando obrigatoriamente de terrenos férteis para se desenvolver. Estas características tornam-no numa fonte apetecível de biomassa para conversão em bioetanol que não compete pelos terrenos cultiváveis utilizados para produção alimentar (Neagu and Bahrim, 2011; Chi et al., 2011; Bajpai and Margaritis, 1982). Este trabalho teve como objetivo a procura de novos microrganismos, especialmente leveduras, a partir de isolamentos de diferentes fontes naturais, nomeadamente dos frutos de alfarrobeira (Ceratonia síliqua), ameixeira (Prunus domestica), cerejeira (Prunus avium), figueira (Ficus carica), medronheiro (Arbutus unedo) e pessegueiro (Prunus persica) e tubérculos de tupinambo (Helianthus tuberosus). Os microrganismos foram selecionados com base nas suas características etanologénicas (maior tolerância a elevadas concentrações de etanol, pH e temperatura e, por isso, capazes de fermentações alcoólicas mais longas); e/ou na capacidade de produção de enzimas relevantes, como inulinases, para posterior aplicação em bioprocessos industriais. A partir de 98 isolados, dos quais 90 eram leveduras e 8 bactérias, foram selecionados 7 isolados diferentes. Destes, 3 isolados foram selecionados porque apresentaram capacidade de converter inulina purificada em etanol; os outros 4 isolados foram selecionados porque foram capazes de produzir etanol mais rapidamente, utilizando sumo de medronho como meio completo. Às 7 estirpes foi aplicado um procedimento de identificação preliminar, utilizando sondas marcadas com um fluoróforo, para hibridação de fluorescência in situ (FISH), especificas para várias espécies de leveduras vínicas, nomeadamente: Hanseniaspora uvarum, Kluyveromyces marxianus, Lachancea thermotolerans, Metschnikowia pulcherrima, Saccharomyces cerevisiae, Torulaspora delbrueckii e Zygosaccharomyces bailii. As 7 estirpes apresentaram um resultado positivo para apenas uma destas sondas, distribuindo-se por três espécies diferentes: Lachancea thermotolerans (AP1), Saccharomyces cerevisiae (DP2 e GluP4) e Zygosaccharomyces bailii (GerP3, Calf2, Talf1 e Talf2). Foi realizado um controlo positivo em cada experiencia de FISH para cada sonda testada, utilizaram-se estirpes identificadas e existentes no laboratório, nomeadamente: CBS 314 (Hanseniaspora uvarum), Kluyveromyces marxianus 516F, CBS 2803 (Lachancea thermotolerans), NRRL Y-987 (Metschnikowia pulcherrima), Saccharomyces cerevisiae CCMI 885, PYCC 4478 (Torulaspora delbrueckii) e Zygosaccharomyces bailii 518F. Foi também utilizada uma sonda universal para células eucariotas (EUK516) em todas as células utilizadas, como controlo positivo, de forma a assegurar a presença de RNA acessível nas células após o procedimento de fixação, essencial na técnica de FISH. Esta identificação preliminar deverá ser validada com técnicas moleculares mais precisas, complementadas com estudos completos de morfologia e fisiologia. Das estirpes preliminarmente identificadas como Z. bailii, três (Calf2, Talf1 e Talf2) apresentaram capacidade de produção de inulinases, uma caraterística não referenciada em estirpes desta espécie (Kurtzman et al., 2011). Foi traçado um perfil metabólico das estirpes, Calf2, Talf1 e Talf2, em confronto com a estirpe Z. bailii 518F utilizando duas galerias API distintas: API ZYM and the API 20C AUX. Conclui-se que as três estirpes têm perfiz metabólicos semelhantes entre si e com Z. bailii 518F, revelando características fisiológicas importantes para aplicação futura. A produção de inulinases é uma característica essencial para a fermentação de inulina em etanol, permitindo a utilização de matérias-primas ricas em inulina como substrato para produção de bioetanol. Com esta finalidade, foi avaliada a produção de inulinases extracelulares das 3 estirpes, utilizando dois substratos indutores: a inulina (extraída de chicória) e o sumo de tupinambo. A estirpe Talf1 apresentou maior atividade enzimática extracelular quando induzida com sumo de tupinambo (8,7 U/ml) do que a estirpe Calf2 e Talf2, que atingiram 4,1 e 7,8 U/ml respetivamente. Utilizando inulina purificada como substrato indutor, todas as estirpes atingiram aproximadamente 0,6 U/ml de atividade enzimática no extrato celular, o que demonstra a fraca capacidade de indução por parte da inulina purificada. De forma a otimizar a produção de inulinases, utilizando a estirpe Talf1, foram testados outros substratos como indutores de inulinases: duas inulinas comerciais, extraídas de fontes naturais diferentes; e três matérias-primas: raízes de acelga, tubérculos de dália e o resíduo sólido de tupinambo, obtido após extração do sumo. Conclui-se que as inulinas comerciais purificadas são fracos indutores, não atingindo valores superiores a 0,6 U/ml, enquanto todas as matérias-primas naturais induziram positivamente a produção de inulinases, obtendo 1,9 U/ml com raízes de acelga, 1,5 U/ml com tubérculos de dália e 5,9 com o resíduo sólido de tupinambo. Concluiu-se que o tupinambo, em particular o sumo, é o melhor substrato indutor, para a produção de inulinases extracelulares utilizando a estirpe Talf1. Foi feita a caracterização bioquímica do extrato enzimático desta estirpe, revelando que a temperatura e o pH ótimos de atividade são 45ºC e 5,5 respetivamente. Foi determinada a estabilidade à temperatura e ao pH; o extrato enzimático manteve 57% da sua atividade inicial ao fim de 24 dias, quando mantido a 30ºC e ao pH natural (5,5). No entanto alterações de pH diminuem drasticamente a estabilidade do extrato (a 30 ºC). As características do extrato enzimático da estirpe Talf1 são promissoras para a sua posterior utilização em bioprocessos que utilizem inulina ou fontes ricas em inulina como substrato desde que ocorram a pH ácido (aproximadamente 5,5) e à temperatura de 30ºC. Dadas as características descritas, a estirpe Talf1 foi utilizada num bioprocesso consolidado (CBP) e o respetivo extrato enzimático utilizado num processo de fermentação e sacarificação simultâneas (SSF) para produção de bioetanol. Para o processo SSF foi utilizada a estirpe etanologénica S. cerevisiae CCMI 885 e o meio foi suplementado com o extrato enzimático produzido por Talf1. Na utilização de inulina como única fonte de carbono, o processo SSF apresentou maior rendimento e produtividade máximos de etanol (47% e 2,75 g.l-1.h-1) e obteve-se maior concentração de etanol no meio (78 g/l), enquanto no processo CBP produziram-se 67 g/l de etanol, com um rendimento e produtividade máximos de 45% e 1,70 g.l-1.h-1 respetivamente. Foi realizado, em paralelo, um crescimento controlo com S. cerevisiae CCMI 885 e inulina como única fonte de carbono. Nestas condições, foram produzidas apenas 50 g/l de etanol, o que demonstra que a adição do extrato enzimático levou à hidrólise de polímeros de inulina que não são utilizados naturalmente por S. cerevisiae, apesar desta estirpe conseguir produzir enzimas que degradam parcialmente polímeros de inulina. A produção de bioetanol a partir diretamente de sumo de tupinambo foi testada pelos dois bioprocessos (SSF e CBP). Neste caso obtiveram-se melhores resultados utilizando a levedura Talf1 no bioprocesso consolidado. A estirpe Talf1 atingiu melhor produtividade (3,62 g.l-1.h-1,), rendimento (51%) e concentração máximas de etanol (67 g/l), do que a estirpe S. cerevisiae CCMI 885 em sumo de tupinambo (SSF), suplementado com o extrato enzimático contendo inulinases, que produziu 62 g/l de etanol, com um rendimento e produtividade máximos de 48% e 2,40 g.l-1.h-1, respetivamente. No ensaio controlo, utilizando a levedura S. cerevisiae CCMI 885 sem adição de qualquer enzima, obtiveram-se menores resultados de rendimento e produtividade máxima (42% e 2,07 g.l-1.h-1) e apenas 55 g/l de etanol produzido, um valor inferior aos resultados obtidos com os anteriores bioprocessos. Estes resultados são consistentes com os obtidos apenas com inulina como fonte de carbono, reforçando a hipótese de que esta estirpe, S. cerevisiae CCMI 885, seja capaz de hidrolisar algumas cadeias de inulina, mas não utilizar todos os açúcares presentes no sumo de tupinambo. Estes resultados mostram o potencial da inulina e fontes naturais ricas em inulina, como o tupinambo, para fontes alternativas na produção de bioetanol. No entanto para a aplicação industrial das estirpes descritas neste trabalho, será necessária posterior otimização de todo o processo. As 4 leveduras selecionadas a partir do rastreio inicial de fermentação de sumo de medronho (L. thermotolerans AP1, S. cerevisiae DP2, S. cerevisiae GluP4 e Z. bailii GerP3), foram utilizadas num ensaio de fermentação de sumo de medronho, em comparação com S. cerevisiae CCMI 885. O melhor resultado foi obtido com a estirpe S. cerevisiae CCMI 885, atingindo-se 108 g/l de etanol, com um rendimento máximo de 51%, igual ao teórico possível, e uma produtividade máxima de 1,29 g.l-1.h-1. No entanto, a estirpe de Z. bailii GerP3, com valores máximos de etanol, produtividade e rendimento máximos de 100 g/l, 1,11 g.l-1.h-1 e 50%, respetivamente, são próximos daqueles obtidos com a levedura S. cerevisiae. A estirpe Z. bailii GerP3 obteve, por isso, os resultados mais promissores para a aplicação num sistema de fermentação em estado sólido diretamente a partir de medronho. O desenvolvimento de um processo eficiente e economicamente viável para produção de bioetanol é crucial para a sociedade atual, servindo como alternativa à utilização de combustíveis fósseis, para uma população mundial que requer cada vez mais energia. A utilização de fontes naturais como o tupinambo e o medronho, para a produção de bioetanol, pode ajudar a reduzir a dependência energética dos combustíveis fósseis. No entanto, para produzir industrialmente bioetanol a partir destas fontes naturais renováveis, e ainda necessária a otimização do processo a escala industrial

    Kinetic investigation and optimization of a sequencing batch reactor for the treatment of textile wastewater

    No full text
    Discharging of untreated or partially treated textile wastewater is common in Ethiopia, and this has detrimental effect to the environment. It is difficult to treat textile wastewater by conventional biological processes. In this study, real textile wastewater was taken and treated using sequencing batch reactor using a biomass taken from domestic wastewater treatment plant. Cycle period, air flowrate and sludge retention time (SRT) were initially optimized using the response surface methodology. The optimum ratio of cycle period/air flowrate/SRT which gives a 57% COD removal and 54% color removal was found to be 25 h/15 L/h/16 day. Using two types of wastewater substrate concentrations and various hydraulic retention times at optimized condition, COD removal, color removal, sludge volume index (SVI) and mixed liquor suspended solid were measured. The maximum of COD removal (73%) and color removal (65.8%) was obtained at an organic loading rate of 0.078 kg COD/m3 day. SVI at the optimized condition was found to be 90–92 mL/g. Finally, a first-order kinetic model was used to represent the degradation of textile wastewater

    Microbial catabolic activities are naturally selected by metabolic energy harvest rate

    Get PDF
    The fundamental trade-off between yield and rate of energy harvest per unit of substrate has been largely discussed as a main characteristic for microbial established cooperation or competition. In this study, this point is addressed by developing a generalized model that simulates competition between existing and not experimentally reported microbial catabolic activities defined only based on well-known biochemical pathways. No specific microbial physiological adaptations are considered, growth yield is calculated coupled to catabolism energetics and a common maximum biomass-specific catabolism rate (expressed as electron transfer rate) is assumed for all microbial groups. Under this approach, successful microbial metabolisms are predicted in line with experimental observations under the hypothesis of maximum energy harvest rate. Two microbial ecosystems, typically found in wastewater treatment plants, are simulated, namely: (i) the anaerobic fermentation of glucose and (ii) the oxidation and reduction of nitrogen under aerobic autotrophic (nitrification) and anoxic heterotrophic and autotrophic (denitrification) conditions. The experimentally observed cross feeding in glucose fermentation, through multiple intermediate fermentation pathways, towards ultimately methane and carbon dioxide is predicted. Analogously, two-stage nitrification (by ammonium and nitrite oxidizers) is predicted as prevailing over nitrification in one stage. Conversely, denitrification is predicted in one stage (by denitrifiers) as well as anammox (anaerobic ammonium oxidation). The model results suggest that these observations are a direct consequence of the different energy yields per electron transferred at the different steps of the pathways. Overall, our results theoretically support the hypothesis that successful microbial catabolic activities are selected by an overall maximum energy harvest rate

    Bio-Fertilizers via Co-Digestion: a Review

    Get PDF
    In diversifying the economies of most oil producing countries especially in regions with arable lands, Agriculture becomes the next choice aside mineral deposits. This has led to a search for an alternative to inorganic fertilizers, the alternatives are the biofertilizers. The paper discussed the classification of the anaerobic co-digestion process based on the application of inoculants to the biodigester feedstock to speed up the digestion process and the absence of inoculants. Biodigester feedstock also looked at the various mechanisms in the digestion process which includes hydrolysis, acidogenesis, acetogenesis, and methanogenesis, the pathways were illustrated with chemical equations and various microorganisms that take part in the anaerobic process were mentioned and tabulated. The types of biofertilizers, merits, and demerits, the difference between biofertilizers and organic fertilizers were comprehensively discussed. Current trends on the application of the co-digestion technique to improve the yield, nutrient, and safety of biofertilizers and also the recent progression on the technique were mentioned
    corecore