410 research outputs found

    Optimization of Beyond 5G Network Slicing for Smart City Applications

    Get PDF
    Transitioning from the current fifth-generation (5G) wireless technology, the advent of beyond 5G (B5G) signifies a pivotal stride toward sixth generation (6G) communication technology. B5G, at its essence, harnesses end-to-end (E2E) network slicing (NS) technology, enabling the simultaneous accommodation of multiple logical networks with distinct performance requirements on a shared physical infrastructure. At the forefront of this implementation lies the critical process of network slice design, a phase central to the realization of efficient smart city networks. This thesis assumes a key role in the network slicing life cycle, emphasizing the analysis and formulation of optimal procedures for configuring, customizing, and allocating E2E network slices. The focus extends to catering to the unique demands of smart city applications, encompassing critical areas such as emergency response, smart buildings, and video surveillance. By addressing the intricacies of network slice design, the study navigates through the complexities of tailoring slices to meet specific application needs, thereby contributing to the seamless integration of diverse services within the smart city framework. Addressing the core challenge of NS, which involves the allocation of virtual networks on the physical topology with optimal resource allocation, the thesis introduces a dual integer linear programming (ILP) optimization problem. This problem is formulated to jointly minimize the embedding cost and latency. However, given the NP-hard nature of this ILP, finding an efficient alternative becomes a significant hurdle. In response, this thesis introduces a novel heuristic approach the matroid-based modified greedy breadth-first search (MGBFS) algorithm. This pioneering algorithm leverages matroid properties to navigate the process of virtual network embedding and resource allocation. By introducing this novel heuristic approach, the research aims to provide near-optimal solutions, overcoming the computational complexities associated with the dual integer linear programming problem. The proposed MGBFS algorithm not only addresses the connectivity, cost, and latency constraints but also outperforms the benchmark model delivering solutions remarkably close to optimal. This innovative approach represents a substantial advancement in the optimization of smart city applications, promising heightened connectivity, efficiency, and resource utilization within the evolving landscape of B5G-enabled communication technology

    Resilient and Scalable Forwarding for Software-Defined Networks with P4-Programmable Switches

    Get PDF
    Traditional networking devices support only fixed features and limited configurability. Network softwarization leverages programmable software and hardware platforms to remove those limitations. In this context the concept of programmable data planes allows directly to program the packet processing pipeline of networking devices and create custom control plane algorithms. This flexibility enables the design of novel networking mechanisms where the status quo struggles to meet high demands of next-generation networks like 5G, Internet of Things, cloud computing, and industry 4.0. P4 is the most popular technology to implement programmable data planes. However, programmable data planes, and in particular, the P4 technology, emerged only recently. Thus, P4 support for some well-established networking concepts is still lacking and several issues remain unsolved due to the different characteristics of programmable data planes in comparison to traditional networking. The research of this thesis focuses on two open issues of programmable data planes. First, it develops resilient and efficient forwarding mechanisms for the P4 data plane as there are no satisfying state of the art best practices yet. Second, it enables BIER in high-performance P4 data planes. BIER is a novel, scalable, and efficient transport mechanism for IP multicast traffic which has only very limited support of high-performance forwarding platforms yet. The main results of this thesis are published as 8 peer-reviewed and one post-publication peer-reviewed publication. The results cover the development of suitable resilience mechanisms for P4 data planes, the development and implementation of resilient BIER forwarding in P4, and the extensive evaluations of all developed and implemented mechanisms. Furthermore, the results contain a comprehensive P4 literature study. Two more peer-reviewed papers contain additional content that is not directly related to the main results. They implement congestion avoidance mechanisms in P4 and develop a scheduling concept to find cost-optimized load schedules based on day-ahead forecasts

    Intégration des méthodes formelles dans le développement des RCSFs

    Get PDF
    In this thesis, we have relied on formal techniques in order to first evaluate WSN protocols and then to propose solutions that meet the requirements of these networks. The thesis contributes to the modelling, analysis, design and evaluation of WSN protocols. In this context, the thesis begins with a survey on WSN and formal verification techniques. Focusing on the MAC layer, the thesis reviews proposed MAC protocols for WSN as well as their design challenges. The dissertation then proceeds to outline the contributions of this work. As a first proposal, we develop a stochastic generic model of the 802.11 MAC protocol for an arbitrary network topology and then perform probabilistic evaluation of the protocol using statistical model checking. Considering an alternative power source to operate WSN, energy harvesting, we move to the second proposal where a protocol designed for EH-WSN is modelled and various performance parameters are evaluated. Finally, the thesis explores mobility in WSN and proposes a new MAC protocol, named "Mobility and Energy Harvesting aware Medium Access Control (MEH-MAC)" protocol for dynamic sensor networks powered by ambient energy. The protocol is modelled and verified under several features

    Jornadas Nacionales de Investigación en Ciberseguridad: actas de las VIII Jornadas Nacionales de Investigación en ciberseguridad: Vigo, 21 a 23 de junio de 2023

    Get PDF
    Jornadas Nacionales de Investigación en Ciberseguridad (8ª. 2023. Vigo)atlanTTicAMTEGA: Axencia para a modernización tecnolóxica de GaliciaINCIBE: Instituto Nacional de Cibersegurida

    Overcoming Bandwidth Fluctuations in Hybrid Networks with QoS-Aware Adaptive Routing

    Get PDF
    With an escalating reliance on sensor-driven scientific endeavors in challenging terrains, the significance of robust hybrid networks, formed by a combination of wireless and wired links, is more noticeable than ever. These networks serve as essential channels for data streaming to centralized data centers, but their efficiency is often degraded by bandwidth fluctuations and network congestion. Especially in bandwidth-sensitive hybrid networks, these issues present demanding challenges to Quality of Service (QoS). Traditional network management solutions fail to provide an adaptive response to these dynamic challenges, thereby underscoring the need for innovative solutions. This thesis introduces a novel approach leveraging the concept of Software-Defined Networking (SDN) to establish a dynamic, congestion-aware routing mechanism. This proposed mechanism stands out by comprising a unique strategy of using bandwidth-based measurements, which help accurately detect and localize network congestion. Unlike traditional methodologies that rely on rigid route management, our approach demonstrates dynamic data flow route adjustment. Experimental data indicate promising outcomes with clear improvements in network utilization and application performance. Furthermore, the proposed algorithm exhibits remarkable scalability, providing quick route-finding solutions for various data flows, without impacting system performance. Thus, this thesis contributes to the ongoing discourse on enhancing hybrid network efficiency in challenging conditions, setting the stage for future explorations in this area

    Empowering Cloud Data Centers with Network Programmability

    Get PDF
    Cloud data centers are a critical infrastructure for modern Internet services such as web search, social networking and e-commerce. However, the gradual slow-down of Moore’s law has put a burden on the growth of data centers’ performance and energy efficiency. In addition, the increasing of millisecond-scale and microsecond-scale tasks also bring higher requirements to the throughput and latency for the cloud applications. Today’s server-based solutions are hard to meet the performance requirements in many scenarios like resource management, scheduling, high-speed traffic monitoring and testing. In this dissertation, we study these problems from a network perspective. We investigate a new architecture that leverages the programmability of new-generation network switches to improve the performance and reliability of clouds. As programmable switches only provide very limited memory and functionalities, we exploit compact data structures and deeply co-design software and hardware to best utilize the resource. More specifically, this dissertation presents four systems: (i) NetLock: A new centralized lock management architecture that co-designs programmable switches and servers to simultaneously achieve high performance and rich policy support. It provides orders-of-magnitude higher throughput than existing systems with microsecond-level latency, and supports many commonly-used policies such as performance isolation. (ii) HCSFQ: A scalable and practical solution to implement hierarchical fair queueing on commodity hardware at line rate. Instead of relying on a hierarchy of queues with complex queue management, HCSFQ does not keep per-flow states and uses only one queue to achieve hierarchical fair queueing. (iii) AIFO: A new approach for programmable packet scheduling that only uses a single FIFO queue. AIFO utilizes an admission control mechanism to approximate PIFO which is theoretically ideal but hard to implement with commodity devices. (iv) Lumina: A tool that enables fine-grained analysis of hardware network stack. By exploiting network programmability to emulate various network scenarios, Lumina is able to help users understand the micro-behaviors of hardware network stacks

    Situation-aware Edge Computing

    Get PDF
    Future wireless networks must cope with an increasing amount of data that needs to be transmitted to or from mobile devices. Furthermore, novel applications, e.g., augmented reality games or autonomous driving, require low latency and high bandwidth at the same time. To address these challenges, the paradigm of edge computing has been proposed. It brings computing closer to the users and takes advantage of the capabilities of telecommunication infrastructures, e.g., cellular base stations or wireless access points, but also of end user devices such as smartphones, wearables, and embedded systems. However, edge computing introduces its own challenges, e.g., economic and business-related questions or device mobility. Being aware of the current situation, i.e., the domain-specific interpretation of environmental information, makes it possible to develop approaches targeting these challenges. In this thesis, the novel concept of situation-aware edge computing is presented. It is divided into three areas: situation-aware infrastructure edge computing, situation-aware device edge computing, and situation-aware embedded edge computing. Therefore, the concepts of situation and situation-awareness are introduced. Furthermore, challenges are identified for each area, and corresponding solutions are presented. In the area of situation-aware infrastructure edge computing, economic and business-related challenges are addressed, since companies offering services and infrastructure edge computing facilities have to find agreements regarding the prices for allowing others to use them. In the area of situation-aware device edge computing, the main challenge is to find suitable nodes that can execute a service and to predict a node’s connection in the near future. Finally, to enable situation-aware embedded edge computing, two novel programming and data analysis approaches are presented that allow programmers to develop situation-aware applications. To show the feasibility, applicability, and importance of situation-aware edge computing, two case studies are presented. The first case study shows how situation-aware edge computing can provide services for emergency response applications, while the second case study presents an approach where network transitions can be implemented in a situation-aware manner

    CITIES: Energetic Efficiency, Sustainability; Infrastructures, Energy and the Environment; Mobility and IoT; Governance and Citizenship

    Get PDF
    This book collects important contributions on smart cities. This book was created in collaboration with the ICSC-CITIES2020, held in San José (Costa Rica) in 2020. This book collects articles on: energetic efficiency and sustainability; infrastructures, energy and the environment; mobility and IoT; governance and citizenship

    Contributions to Securing Software Updates in IoT

    Get PDF
    The Internet of Things (IoT) is a large network of connected devices. In IoT, devices can communicate with each other or back-end systems to transfer data or perform assigned tasks. Communication protocols used in IoT depend on target applications but usually require low bandwidth. On the other hand, IoT devices are constrained, having limited resources, including memory, power, and computational resources. Considering these limitations in IoT environments, it is difficult to implement best security practices. Consequently, network attacks can threaten devices or the data they transfer. Thus it is crucial to react quickly to emerging vulnerabilities. These vulnerabilities should be mitigated by firmware updates or other necessary updates securely. Since IoT devices usually connect to the network wirelessly, such updates can be performed Over-The-Air (OTA). This dissertation presents contributions to enable secure OTA software updates in IoT. In order to perform secure updates, vulnerabilities must first be identified and assessed. In this dissertation, first, we present our contribution to designing a maturity model for vulnerability handling. Next, we analyze and compare common communication protocols and security practices regarding energy consumption. Finally, we describe our designed lightweight protocol for OTA updates targeting constrained IoT devices. IoT devices and back-end systems often use incompatible protocols that are unable to interoperate securely. This dissertation also includes our contribution to designing a secure protocol translator for IoT. This translation is performed inside a Trusted Execution Environment (TEE) with TLS interception. This dissertation also contains our contribution to key management and key distribution in IoT networks. In performing secure software updates, the IoT devices can be grouped since the updates target a large number of devices. Thus, prior to deploying updates, a group key needs to be established among group members. In this dissertation, we present our designed secure group key establishment scheme. Symmetric key cryptography can help to save IoT device resources at the cost of increased key management complexity. This trade-off can be improved by integrating IoT networks with cloud computing and Software Defined Networking (SDN).In this dissertation, we use SDN in cloud networks to provision symmetric keys efficiently and securely. These pieces together help software developers and maintainers identify vulnerabilities, provision secret keys, and perform lightweight secure OTA updates. Furthermore, they help devices and systems with incompatible protocols to be able to interoperate
    corecore