6,229 research outputs found

    Automotive Powertrain Control — A Survey

    Full text link
    This paper surveys recent and historical publications on automotive powertrain control. Control-oriented models of gasoline and diesel engines and their aftertreatment systems are reviewed, and challenging control problems for conventional engines, hybrid vehicles and fuel cell powertrains are discussed. Fundamentals are revisited and advancements are highlighted. A comprehensive list of references is provided.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72023/1/j.1934-6093.2006.tb00275.x.pd

    Catalog of selected heavy duty transport energy management models

    Get PDF
    A catalog of energy management models for heavy duty transport systems powered by diesel engines is presented. The catalog results from a literature survey, supplemented by telephone interviews and mailed questionnaires to discover the major computer models currently used in the transportation industry in the following categories: heavy duty transport systems, which consist of highway (vehicle simulation), marine (ship simulation), rail (locomotive simulation), and pipeline (pumping station simulation); and heavy duty diesel engines, which involve models that match the intake/exhaust system to the engine, fuel efficiency, emissions, combustion chamber shape, fuel injection system, heat transfer, intake/exhaust system, operating performance, and waste heat utilization devices, i.e., turbocharger, bottoming cycle

    Diesel engines equipped with piezoelectric and solenoid injectors: hydraulic performance of the injectors and comparison of the emissions, noise and fuel consumption

    Get PDF
    A comprehensive comparison between solenoid and indirect acting piezoelectric injectors has been carried out. The working principle of these injector typologies is illustrated, and their hydraulic performance has been analysed and discussed on the basis of experimental data collected at a hydraulic test rig. The injector char- acteristics, injected fl ow-rate pro fi les, nozzle opening and closure delays, injector leakages and injected volume fl uctuations with the dwell time have been compared in order to evaluate the impact of the injector driving system. The solenoid and piezoelectric injectors have been installed on a Euro 5 diesel engine, which has been tested experimentally at a dynamometer cell. Optimized double and triple injection strategies have been considered at some representative key points of the New European Driving Cycle. Engine-out emissions, brake speci fi c fuel consumption and combustion noise are presented and discussed, with the support of a three-zone, diesel com- bustion diagnostic model. The research has focused on the cause-and-e ff ect relationships between the hydraulic performance of the injectors and the results of the engine tests. The primary goal has been to assess if the di ff erences in engine performance between the solenoidal and indirect-acting piezoelectric injector setups are due to the injector driving system or to speci fi c features that are present in the hydraulic circuit of the considered injectors and which are not closely related to the driving system. A fi nal evaluation of the potential of the piezoelectric technology for driving indirect acting injectors is provided on the basis of real engine result

    The Two Faces of Collaboration: Impacts of University-Industry Relations on Public Research

    Get PDF
    We analyze the impact of university-industry relationships on public research. Our inductive study of university-industry collaboration in engineering suggests that basic projects are more likely to yield academically valuable knowledge than applied projects. However, applied projects show higher degrees of partner interdependence and therefore enable exploratory learning by academics, leading to new ideas and projects. This result holds especially for research-oriented academics working in the ‘sciences of the artificial’ and engaging in multiple relationships with industry. Our learning-centred interpretation qualifies the notion of entrepreneurial science as a driver of applied university-industry collaboration. We conclude with implications for science and technology policy.University industry relations; Collaborative research; Contract research; Academic consulting; Science technology links; Engineering

    Effect of nozzle and combustion chamber geometry on the performance of a diesel engine operated on dual fuel mode using renewable fuels

    Get PDF
    none6siRenewable and alternative fuels have numerous advantages compared to fossil fuels as they are biodegradable, providing energy security and foreign exchange saving and addressing environmental concerns, and socio-economic issues as well. Therefore renewable fuels can be predominantly used as fuel for transportation and power generation applications. In view of this background, effect of nozzle and combustion chamber geometry on the performance, combustion and emission characteristics have been investigated in a single cylinder, four stroke water cooled direct injection (DI) compression ignition (CI) engine operated on dual fuel mode using Honge methyl ester (HOME) and producer gas induction. In the present experimental investigation, an effort has been made to enhance the performance of a dual fuel engine utilizing different nozzle orifice and combustion chamber configurations. In the first phase of the work, injector nozzle (3, 4 and 5 hole injector nozzle, each having 0.2, 0.25 and 0.3 mm hole diameter and injection pressure (varied from 210 to 240 bar in steps of 10 bar) was optimized. Subsequently in the next phase of the work, combustion chamber for optimum performance was investigated. In order to match proper combustion chamber for optimum nozzle geometry, two types of combustion chambers such as hemispherical and re-entrant configurations were used. Re-entrant type combustion chamber and 230 bar injection pressure, 4 hole and 0.25 mm nozzle orifice have shown maximum performance. Results of investigation on HOME-producer gas operation showed 4-5% increased brake thermal efficiency with reduced emission levels. However, more research and development of technology should be devoted to this field to further enhance the performance and feasibility of these fuels for dual fuel operation and future exploitations.openYaliwal, V.S.; Banapurmath, N.R.; Gireesh, N.M.; Hosmath, R.S.; Donateo, Teresa; Tewari, P.G.Yaliwal, V. S.; Banapurmath, N. R.; Gireesh, N. M.; Hosmath, R. S.; Donateo, Teresa; Tewari, P. G

    Investigation of Nascar Restrictor Plate Manifold Insert Using Wave Engine Simulation and Response Surface Methodology

    Get PDF
    With the increasing growth in computer processing power, computer based computational fluid dynamics simulations are finding increasing acceptance and use in the field of internal combustion engine development. Once fully developed, such simulations provide detailed and expedient tools for testing existing theories, as well as new ideas. While numerous studies on wave propagation and fluid flow in intakes manifolds exist, most restrict the analysis to a single intake runner and port, examining only the dynamics from the runner-to-plenum junction downstream to the valve. While such analyses provide comprehensive models for wave propagation dynamics in the runner, little is published on the fluid dynamics and wave propagation in the plenum, and the interactions between runners when an intake manifold\u27s geometric constraints prevent symmetry in the manifold. This paper will examine the modeling of a 2003 specification Dodge Motorsports NASCAR Restrictor Plate engine using Ricardo\u27s WAVE engine simulation computational fluid dynamics software. This examination will include an introduction to the software and required engine data for constructing a comprehensive model, the process used to validate the simulation\u27s output with acquired engine performance data, and the use of response surface methodology to optimize the dimensions of the plenum insert associated junction. Additionally, an analysis of the problems with modeling this area of the manifold using one-dimensional CFD will be conducted, as well as a discussion of the theories surrounding the insert. Finally, a new hypothesis regarding the insert as well as future work to examine this hypothesis will be introduced

    Increasing Safety in Ultralight Aviation with a Wankel-Based Series/Parallel Hybrid Electric Power System

    Get PDF
    none2The goal of this investigation is to propose a series/parallel hybrid electric power system for ultralight aviation designed to improve safety and, possibly, reduce fuel consumption. The power system consists of a Wankel engine, two electric machines, a battery, and a planetary gear set, all acquired from the automotive market. After a preliminary design based on takeoff power, the system is simulated over a typical flight mission and in case of engine failure for a first validation of the proposed powertrain. The investigation also shows a comparison in terms of performance and fuel consumption between the initial configuration (reciprocating piston engine), a non-hybrid Wankel arrangement, and the proposed hybrid electric configurations by using in-house simulation software. A heuristic energy management strategy is proposed as well. During a typical mission, the new powertrain works as a parallel hybrid during takeoff and climb, thus ensuring high performance and safety. During the cruise, the system behaves like a parallel hybrid with a continuously variable transmission that makes the engine work always at high efficiency. The battery is partially recharged during the descent by the extra power of the engine. The preliminary results reported in this work predict an improvement in fuel consumption by about 20% compared with the initial piston engine configuration and 28% compare with the non-hybrid Wankel powertrain, despite the larger takeoff weight.T. Donateo, D. CavaleraDonateo, T.; Cavalera, D

    Investigation of Advanced Engine Cooling Systems - Optimization and Nonlinear Control

    Get PDF
    Advanced automotive engine cooling systems can positively impact the performance, fuel economy, and reliability of internal combustion engines. A smart engine cooling system typically features multiple real time computer controlled actuators: a three way linear smart valve, a variable speed coolant pump, and electric radiator fan(s). In this dissertation, several innovative comprehensive nonlinear control and optimization operation strategies for the next generation smart cooling application will be analyzed. First, the optimal control has been investigated to minimize the electric energy usage of radiator fan matrix. A detailed mathematical model of the radiator fan(s) matrix operation and the forced convection heat transfer process was developed to establish a mixed integer nonlinear programming problem. An interior points approach was introduced to solve the energy consumption minimization problem. A series of laboratory tests have been conducted with different fan configurations and rotational shaft speed combinations, with the objective to cool a thermal loaded engine. Both the mathematical approach and the laboratory test results demonstrated the effectiveness of similar control strategies. Based on the tests data and mathematical analysis, an optimization control strategy reduced the fan matrix power consumption by up to 67%. Second, a series of experimental laboratory tests were implemented to investigate the contributions of each electro-mechanical device in automotive thermal management system. The test results established a basis for several key operating conclusions. The smart valve and variable speed pump impacted the engine temperature by adjusting the heat transfer rate between the engine and the radiator through coolant redirection and/or coolant flow rate. On the other hand, the radiator fan(s) operation affects the engine\u27s temperature by modifying the heat rejection rate of the radiator which can influence the entire cooling system. In addition, the smart valve\u27s operation changes the engine\u27s temperature magnitude the greatest amount followed by the radiator fan(s) and the coolant pump. Furthermore, from a power consumption aspect, the radiator fan(s) consumes the most engine power in comparison to the two other actuators. Third, a Lyapunov based nonlinear control strategy for the radiator fan matrix was studied to accommodate transient engine temperature tracking at heavy heat load. A reduced order mathematical model established a basis for the closed-loop real time feedback system. Representative numerical and experimental tests demonstrated that the advanced control strategy can regulate the engine temperature tracking error within 0.12°C and compensate the unknown heat load. The nonlinear controller provided superior performance in terms of power consumption and temperature tracking as evident by the reduced magnitude when compared to a classical proportional integral with lookup table based controller and a bang bang controller. Fourth, a nonlinear adaptive multiple-input and multiple-output (NAMIMO) controller to operate the smart valve and radiator fans has been presented. This controller regulates the engine temperature while compensating for unknown wide range heat loads and ram air effects. A nonlinear adaptive backstepping (NAB) control strategy and a state flow (SF) control law were introduced for comparisons. The test results indicated that the NAMIMO successfully regulated the engine temperature to a desired value (tracking error, |e|\u3c0.5°C, at steady state) subject to various working conditions. In contrast, the NAB control law consumes the least radiator fan power but demonstrated a larger average temperature tracking error (40% greater than the NAMIMO controller), a longer response time (34% greater than the NAMIMO controller), and defected when the heat load was low. Lastly, the SF controller, characterized by greater oscillation and electrical power consumption (18.9% greater than the NAMIMO controller), was easy to realize and maintained the engine temperature to within |e|\u3c5°C. An important aspect of engineering research is the knowledge gained from learning materials to fully understand the thermal management. As part of the dissertation, advanced three-dimensional (3D) visualization and virtual reality (VR) technology based engineering education methods has been studied. A series of computer aided design (CAD) models with storyboards have been created to provide a step to step guide for developing the learning modules. The topics include automotive, aerospace, and manufacturing. The center for aviation and automotive technological education using virtual e-schools (CA2VES) at Clemson University has developed a comprehensive e-learning system integrated with eBooks, mini video lectures, 3D virtual reality technologies, and online assessments as supplementary materials to engineering education

    Automotive Stirling engine development program

    Get PDF
    This is the ninth Semiannual Technical Progress Report prepared under the Automotive Stirling Engine Development Program. It covers the twenty-eighth and twenty-ninth quarters of activity after award of the contract. Quarterly Technical Progress Reports related program activities from the first through the thirteenth quarters; thereafter, reporting was changed to a Semiannual format. This report summarizes the study of higher-power kinematic Stirling engines for transportation use, development testing of Mod I Stirling engines, and component development activities. Component development testing included successful conical fuel nozzle testing and functional checkout of Mod II controls and auxiliaries on Mod I engine test beds. Overall program philosophy is outlined and data and test results are presented
    • …
    corecore