1,703 research outputs found

    Joint Tomlinson-Harashima precoding and optimum transmit power allocation for SC-FDMA

    Get PDF

    Digital equalization of time-delay array receivers on coherent laser communications

    Get PDF
    © [2017 Optical Society of America.]. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibited.Field conjugation arrays use adaptive combining techniques on multi-aperture receivers to improve the performance of coherent laser communication links by mitigating the consequences of atmospheric turbulence on the down-converted coherent power. However, this motivates the use of complex receivers as optical signals collected by different apertures need to be adaptively processed, co-phased, and scaled before they are combined. Here, we show that multiple apertures, coupled with optical delay lines, combine retarded versions of a signal at a single coherent receiver, which uses digital equalization to obtain diversity gain against atmospheric fading. We found in our analysis that, instead of field conjugation arrays, digital equalization of time-delay multi-aperture receivers is a simpler and more versatile approach to accomplish reduction of atmospheric fading.Peer ReviewedPostprint (author's final draft

    Design trade-offs for cost-effective multimode fiber channel equalizers in optical data center applications

    Get PDF
    A 10-Gb/s transmission over 1-km standard multimode fiber for data center applications is casestudied in terms of the design considerations for low-complexity and cost-effective equalizers which can increase the reach of multimode fiber links

    Joint transceiver design for MIMO channel shortening.

    Get PDF
    Channel shortening equalizers can be employed to shorten the effective impulse response of a long intersymbol interference (ISI) channel in order, for example, to decrease the computational complexity of a maximum-likelihood sequence estimator (MLSE) or to increase the throughput efficiency of an orthogonal frequency-division multiplexing (OFDM) transmission scheme. In this paper, the issue of joint transmitter–receiver filter design is addressed for shortening multiple-input multiple-output (MIMO) ISI channels. A frequency-domain approach is adopted for the transceiver design which is effectively equivalent to an infinite-length time-domain design. A practical space–frequency waterfilling algorithm is also provided. It is demonstrated that the channel shortening equalizer designed according to the time-domain approach suffers from an error-floor effect. However, the proposed techniques are shown to overcome this problem and outperform the time-domain channel shortening filter design. We also demonstrate that the proposed transceiver design can be considered as a MIMO broadband beamformer with constraints on the time-domain multipath length. Hence, a significant diversity gain could also be achieved by choosing strong eigenmodes of the MIMO channel. It is also found that the proposed frequency-domain methods have considerably low computational complexity as compared with their time-domain counterparts
    corecore