223 research outputs found

    Aeronautical engineering: A continuing bibliography with indexes (supplement 292)

    Get PDF
    This bibliography lists 675 reports, articles, and other documents recently introduced into the NASA scientific and technical information system database. Subject coverage includes the following: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics

    Aerodynamic Shape Design of Nozzles Using a Hybrid Optimization Method

    Get PDF
    A hybrid design optimization method combining the stochastic method based on simultaneous perturbation stochastic approximation (SPSA) and the deterministic method of Broydon-Fletcher-Goldfarb-Shanno (BFGS) is developed in order to take advantage of the high efficiency of the gradient based methods and the global search capabilities of SPSA for applications in the optimal aerodynamic shape design of a three dimensional elliptic nozzle. The performance of this hybrid method is compared with that of SPSA, simulated annealing (SA) and gradient based BFGS method. The objective functions which are minimized are estimated by numerically solving the 3D Euler and Navier-Stokes equations using a TVD approach and a LU implicit scheme. Computed results show that the hybrid optimization method proposed in this study shows a promise of high computational efficiency and global search capabilities.Singapore-MIT Alliance (SMA

    Aeronautical engineering: A continuing bibliography with indexes (supplement 217)

    Get PDF
    This bibliography lists 450 reports, articles, and other documents introduced into the NASA scientific and technical information system in August, 1987

    Aeronautical engineering: A continuing bibliography with indexes (supplement 309)

    Get PDF
    This bibliography lists 212 reports, articles, and other documents introduced into the NASA scientific and technical information system in Oct. 1994. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics

    Aerostructural Wing Shape Optimization assisted by Algorithmic Differentiation

    Get PDF
    With more efficient structures, last trends in aeronautics have witnessed an increased flexibility of wings, calling for adequate design and optimization approaches. To correctly model the coupled physics, aerostructural optimization has progressively become more important, being nowadays performed also considering higher-fidelity discipline methods, i.e., CFD for aerodynamics and FEM for structures. In this paper a methodology for high-fidelity gradient-based aerostructural optimization of wings, including aerodynamic and structural nonlinearities, is presented. The main key feature of the method is its modularity: each discipline solver, independently employing algorithmic differentiation for the evaluation of adjoint-based sensitivities, is interfaced at high-level by means of a wrapper to both solve the aerostructural primal problem and evaluate exact discrete gradients of the coupled problem. The implemented capability, ad-hoc created to demonstrate the methodology, and freely available within the open-source SU2 multiphysics suite, is applied to perform aerostructural optimization of aeroelastic test cases based on the ONERA M6 and NASA CRM wings. Single-point optimizations, employing Euler or RANS flow models, are carried out to find wing optimal outer mold line in terms of aerodynamic efficiency. Results remark the importance of taking into account the aerostructural coupling when performing wing shape optimization

    Aeronautical engineering: A cumulative index to a continuing bibliography

    Get PDF
    This bibliography is a cumulative index to the abstracts contained in NASA SP-7037(210) through NASA SP-7037(221) of Aeronautical Engineering: A Continuing Bibliography. NASA SP-7037 and its supplements have been compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). This cumulative index includes subject, personal author, corporate source, foreign technology, contract number, report number, and accession number indexes

    Aeronautical Engineering: A Continuing Bibliography with Indexes

    Get PDF
    This report lists reports, articles and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract

    Aeronautical engineering: A continuing bibliography with indexes (supplement 284)

    Get PDF
    This bibliography lists 974 reports, articles, and other documents introduced into the NASA scientific and technical information system in Oct. 1992. The coverage includes documents on design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles

    Aeronautical engineering: A continuing bibliography with indexes (supplement 277)

    Get PDF
    This bibliography lists 467 reports, articles, and other documents introduced into the NASA scientific and technical information system in Mar. 1992. Subject coverage includes: the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines); and associated aircraft components, equipment, and systems. It also includes research and development in ground support systems, theoretical and applied aspects of aerodynamics, and general fluid dynamics

    A finite point method for adaptive three-dimensional compressible flow calculation

    Get PDF
    The Finite Point Method (FPM) is a meshless technique which is based on both, a Weighted Least-Squares numerical approximation on local clouds of points and a collocation technique which allows obtaining the discrete system of equations. The research work we present is part of a major investigation into the capabilities of the FPM to deal with threedimensional applications concerning real compressible fluid flow problems. In the first part of this work, the upwind biased scheme employed for solving the flow equations is described. Secondly, with the aim of exploiting meshless capabilities, an h-adaptive methodology for two and three-dimensional compressible flow calculations is developed. This adaptive technique applies a solution-based indicator in order to identify local clouds where new points should be inserted in or existing points could be safely removed from the computational domain. The flow solver and the adaptive procedure have been evaluated and the results are highly encouraging. Several numerical examples are provided throughout the article in order to illustrate their performance
    corecore