1,784 research outputs found

    A Neuroevolutionary Approach to Stochastic Inventory Control in Multi-Echelon Systems

    Get PDF
    Stochastic inventory control in multi-echelon systems poses hard problems in optimisation under uncertainty. Stochastic programming can solve small instances optimally, and approximately solve larger instances via scenario reduction techniques, but it cannot handle arbitrary nonlinear constraints or other non-standard features. Simulation optimisation is an alternative approach that has recently been applied to such problems, using policies that require only a few decision variables to be determined. However, to find optimal or near-optimal solutions we must consider exponentially large scenario trees with a corresponding number of decision variables. We propose instead a neuroevolutionary approach: using an artificial neural network to compactly represent the scenario tree, and training the network by a simulation-based evolutionary algorithm. We show experimentally that this method can quickly find high-quality plans using networks of a very simple form

    Robust Multi-Objective Sustainable Reverse Supply Chain Planning: An Application in the Steel Industry

    Get PDF
    In the design of the supply chain, the use of the returned products and their recycling in the production and consumption network is called reverse logistics. The proposed model aims to optimize the flow of materials in the supply chain network (SCN), and determine the amount and location of facilities and the planning of transportation in conditions of demand uncertainty. Thus, maximizing the total profit of operation, minimizing adverse environmental effects, and maximizing customer and supplier service levels have been considered as the main objectives. Accordingly, finding symmetry (balance) among the profit of operation, the environmental effects and customer and supplier service levels is considered in this research. To deal with the uncertainty of the model, scenario-based robust planning is employed alongside a meta-heuristic algorithm (NSGA-II) to solve the model with actual data from a case study of the steel industry in Iran. The results obtained from the model, solving and validating, compared with actual data indicated that the model could optimize the objectives seamlessly and determine the amount and location of the necessary facilities for the steel industry more appropriately.This article belongs to the Special Issue Uncertain Multi-Criteria Optimization Problem

    Stochastic multi-period multi-product multi-objective Aggregate Production Planning model in multi-echelon supply chain

    Get PDF
    In this paper a multi-period multi-product multi-objective aggregate production planning (APP) model is proposed for an uncertain multi-echelon supply chain considering financial risk, customer satisfaction, and human resource training. Three conflictive objective functions and several sets of real constraints are considered concurrently in the proposed APP model. Some parameters of the proposed model are assumed to be uncertain and handled through a two-stage stochastic programming (TSSP) approach. The proposed TSSP is solved using three multi-objective solution procedures, i.e., the goal attainment technique, the modified ε-constraint method, and STEM method. The whole procedure is applied in an automotive resin and oil supply chain as a real case study wherein the efficacy and applicability of the proposed approaches are illustrated in comparison with existing experimental production planning method

    Level of Repair Analysis: A Generic Model

    Get PDF
    Given a product design and a repair network, a level of repair analysis (lora) determines for each component in the product (1) whether it should be discarded or repaired upon failure and (2) at which echelon in the repair network to do this. The objective of the lora is to minimize the total (variable and fixed) costs. We propose an ip model that generalizes the existing models, based on cases that we have seen in practice. Analysis of our model reveals that the integrality constraints on a large number of binary variables can be relaxed without yielding a fractional solution. As a result, we are able to solve problem instances of a realistic size in a couple of seconds on average. Furthermore, we suggest some improvements to the lora analysis in the current literature

    An efficient model formulation for level of repair analysis \ud

    Get PDF
    Given a product design and a repair network, a level of repair analysis (LORA)\ud determines for each component in the product (1) whether it should be discarded or repaired\ud upon failure and (2) at which echelon in the repair network to do this. The objective of\ud the LORA is to minimize the total (variable and fixed) costs. We propose an IP model that\ud generalizes the existing models, based on cases that we have seen in practice. Analysis of\ud our model reveals that the integrality constraints on a large number of binary variables can\ud be relaxed without yielding a fractional solution. As a result, we are able to solve problem\ud instances of a realistic size in a couple of seconds on average. Furthermore, we suggest some\ud improvements to the LORA analysis in the current literatur

    Development of Genetic Algorithm-based Stochastic Model to Study and Optimize Single-echelon vs Multi-echelon Inventory Systems

    Get PDF
    A Thesis Presented to the Faculty of the College of Science and Technology Morehead State University in Partial Fulfillment of the requirements for the Degree Master of Science by Nadeera Ekanayake on November 18, 2013
    corecore