6,637 research outputs found

    Modeling and Analysis of Power Processing Systems (MAPPS). Volume 1: Technical report

    Get PDF
    Computer aided design and analysis techniques were applied to power processing equipment. Topics covered include: (1) discrete time domain analysis of switching regulators for performance analysis; (2) design optimization of power converters using augmented Lagrangian penalty function technique; (3) investigation of current-injected multiloop controlled switching regulators; and (4) application of optimization for Navy VSTOL energy power system. The generation of the mathematical models and the development and application of computer aided design techniques to solve the different mathematical models are discussed. Recommendations are made for future work that would enhance the application of the computer aided design techniques for power processing systems

    An Approximate Maximum Common Subgraph Algorithm for Large Digital Circuits

    Get PDF
    This paper presents an approximate Maximum Common Subgraph (MCS) algorithm, specifically for directed, cyclic graphs representing digital circuits. \ud Because of the application domain, the graphs have nice properties: they are very sparse; have many different labels; and most vertices have only one predecessor. The algorithm iterates over all vertices once and uses heuristics to find the MCS. It is linear in computational complexity with respect to the size of the graph. Experiments show that very large common subgraphs were found in graphs of up to 200,000 vertices within a few minutes, when a quarter or less of the graphs differ. The variation in run-time and quality of the result is low

    An efficient genetic algorithm for large-scale transmit power control of dense and robust wireless networks in harsh industrial environments

    Get PDF
    The industrial wireless local area network (IWLAN) is increasingly dense, due to not only the penetration of wireless applications to shop floors and warehouses, but also the rising need of redundancy for robust wireless coverage. Instead of simply powering on all access points (APs), there is an unavoidable need to dynamically control the transmit power of APs on a large scale, in order to minimize interference and adapt the coverage to the latest shadowing effects of dominant obstacles in an industrial indoor environment. To fulfill this need, this paper formulates a transmit power control (TPC) model that enables both powering on/off APs and transmit power calibration of each AP that is powered on. This TPC model uses an empirical one-slope path loss model considering three-dimensional obstacle shadowing effects, to enable accurate yet simple coverage prediction. An efficient genetic algorithm (GA), named GATPC, is designed to solve this TPC model even on a large scale. To this end, it leverages repair mechanism-based population initialization, crossover and mutation, parallelism as well as dedicated speedup measures. The GATPC was experimentally validated in a small-scale IWLAN that is deployed a real industrial indoor environment. It was further numerically demonstrated and benchmarked on both small- and large-scales, regarding the effectiveness and the scalability of TPC. Moreover, sensitivity analysis was performed to reveal the produced interference and the qualification rate of GATPC in function of varying target coverage percentage as well as number and placement direction of dominant obstacles. (C) 2018 Elsevier B.V. All rights reserved

    Dynamic optimization of the quality of experience during mobile video watching

    Get PDF
    Mobile video consumption through streaming is becoming increasingly popular. The video parameters for an optimal quality are often automatically determined based on device and network conditions. Current mobile video services typically decide on these parameters before starting the video streaming and stick to these parameters during video playback. However in a mobile environment, conditions may change significantly during video playback. Therefore, this paper proposes a dynamic optimization of the quality taking into account real-time data regarding network, device, and user movement during video playback. The optimization method is able to change the video quality level during playback if changing conditions require this. Through a user test, the dynamic optimization is compared with a traditional, static, quality optimization method. The results showed that our optimization can improve the perceived playback and video quality, especially under varying network conditions

    Approximate Approximation on a Quantum Annealer

    Full text link
    Many problems of industrial interest are NP-complete, and quickly exhaust resources of computational devices with increasing input sizes. Quantum annealers (QA) are physical devices that aim at this class of problems by exploiting quantum mechanical properties of nature. However, they compete with efficient heuristics and probabilistic or randomised algorithms on classical machines that allow for finding approximate solutions to large NP-complete problems. While first implementations of QA have become commercially available, their practical benefits are far from fully explored. To the best of our knowledge, approximation techniques have not yet received substantial attention. In this paper, we explore how problems' approximate versions of varying degree can be systematically constructed for quantum annealer programs, and how this influences result quality or the handling of larger problem instances on given set of qubits. We illustrate various approximation techniques on both, simulations and real QA hardware, on different seminal problems, and interpret the results to contribute towards a better understanding of the real-world power and limitations of current-state and future quantum computing.Comment: Proceedings of the 17th ACM International Conference on Computing Frontiers (CF 2020
    corecore