7,290 research outputs found

    Enhanced Estimation of Autoregressive Wind Power Prediction Model Using Constriction Factor Particle Swarm Optimization

    Full text link
    Accurate forecasting is important for cost-effective and efficient monitoring and control of the renewable energy based power generation. Wind based power is one of the most difficult energy to predict accurately, due to the widely varying and unpredictable nature of wind energy. Although Autoregressive (AR) techniques have been widely used to create wind power models, they have shown limited accuracy in forecasting, as well as difficulty in determining the correct parameters for an optimized AR model. In this paper, Constriction Factor Particle Swarm Optimization (CF-PSO) is employed to optimally determine the parameters of an Autoregressive (AR) model for accurate prediction of the wind power output behaviour. Appropriate lag order of the proposed model is selected based on Akaike information criterion. The performance of the proposed PSO based AR model is compared with four well-established approaches; Forward-backward approach, Geometric lattice approach, Least-squares approach and Yule-Walker approach, that are widely used for error minimization of the AR model. To validate the proposed approach, real-life wind power data of \textit{Capital Wind Farm} was obtained from Australian Energy Market Operator. Experimental evaluation based on a number of different datasets demonstrate that the performance of the AR model is significantly improved compared with benchmark methods.Comment: The 9th IEEE Conference on Industrial Electronics and Applications (ICIEA) 201

    State-of-the-art in aerodynamic shape optimisation methods

    Get PDF
    Aerodynamic optimisation has become an indispensable component for any aerodynamic design over the past 60 years, with applications to aircraft, cars, trains, bridges, wind turbines, internal pipe flows, and cavities, among others, and is thus relevant in many facets of technology. With advancements in computational power, automated design optimisation procedures have become more competent, however, there is an ambiguity and bias throughout the literature with regards to relative performance of optimisation architectures and employed algorithms. This paper provides a well-balanced critical review of the dominant optimisation approaches that have been integrated with aerodynamic theory for the purpose of shape optimisation. A total of 229 papers, published in more than 120 journals and conference proceedings, have been classified into 6 different optimisation algorithm approaches. The material cited includes some of the most well-established authors and publications in the field of aerodynamic optimisation. This paper aims to eliminate bias toward certain algorithms by analysing the limitations, drawbacks, and the benefits of the most utilised optimisation approaches. This review provides comprehensive but straightforward insight for non-specialists and reference detailing the current state for specialist practitioners

    Short-term wind prediction using an ensemble of particle swarm optimised FIR filters

    Get PDF
    Due to the large and increasing penetration of wind power around the world, accurate power production forecasts are required to manage power systems and wind power plants. In this paper we propose an ensemble of particle swarm optimised filtering technique for 1-hour-ahead prediction of hourly mean wind speed and direction. The performance of the new method is assessed by testing it on data from 13 locations around the UK where it performs comparably to linear techniques but is able to provide significant improvement at a subset of locations

    Simulated Tornado Optimization

    Full text link
    We propose a swarm-based optimization algorithm inspired by air currents of a tornado. Two main air currents - spiral and updraft - are mimicked. Spiral motion is designed for exploration of new search areas and updraft movements is deployed for exploitation of a promising candidate solution. Assignment of just one search direction to each particle at each iteration, leads to low computational complexity of the proposed algorithm respect to the conventional algorithms. Regardless of the step size parameters, the only parameter of the proposed algorithm, called tornado diameter, can be efficiently adjusted by randomization. Numerical results over six different benchmark cost functions indicate comparable and, in some cases, better performance of the proposed algorithm respect to some other metaheuristics.Comment: 6 pages, 15 figures, 1 table, IEEE International Conference on Signal Processing and Intelligent System (ICSPIS16), Dec. 201

    Parametric Wind Velocity Vector Estimation Method for Single Doppler LIDAR Model

    Get PDF
    Doppler lidar (LIght Detection And Ranging) can provide accurate wind velocity vector estimates by processing the time delay and Doppler spectrum of received signals. This system is essential for real-time wind monitoring to assist aircraft taking off and landing. Considering the difficulty of calibration and cost, a single Doppler lidar model is more attractive and practical than a multiple lidar model. In general, it is impossible to estimate two or three dimensional wind vectors from a single lidar model without any prior information, because lidar directly observes only a 1-dimensional (radial direction) velocity component of wind. Although the conventional VAD (Velocity Azimuth Display) and VVP (Velocity Volume Processing) methods have been developed for single lidar model, both of them are inaccurate in the presence of local air turbulence. This paper proposes an accurate wind velocity estimation method based on a parametric approach using typical turbulence models such as tornado, micro-burst and gust front. The results from numerical simulation demonstrate that the proposed method remarkably enhances the accuracy for wind velocity estimation in the assumed modeled turbulence cases, compared with that obtained by the VAD or other conventional method

    Load Forecasting Based Distribution System Network Reconfiguration-A Distributed Data-Driven Approach

    Full text link
    In this paper, a short-term load forecasting approach based network reconfiguration is proposed in a parallel manner. Specifically, a support vector regression (SVR) based short-term load forecasting approach is designed to provide an accurate load prediction and benefit the network reconfiguration. Because of the nonconvexity of the three-phase balanced optimal power flow, a second-order cone program (SOCP) based approach is used to relax the optimal power flow problem. Then, the alternating direction method of multipliers (ADMM) is used to compute the optimal power flow in distributed manner. Considering the limited number of the switches and the increasing computation capability, the proposed network reconfiguration is solved in a parallel way. The numerical results demonstrate the feasible and effectiveness of the proposed approach.Comment: 5 pages, preprint for Asilomar Conference on Signals, Systems, and Computers 201

    Air Quality Prediction in Smart Cities Using Machine Learning Technologies Based on Sensor Data: A Review

    Get PDF
    The influence of machine learning technologies is rapidly increasing and penetrating almost in every field, and air pollution prediction is not being excluded from those fields. This paper covers the revision of the studies related to air pollution prediction using machine learning algorithms based on sensor data in the context of smart cities. Using the most popular databases and executing the corresponding filtration, the most relevant papers were selected. After thorough reviewing those papers, the main features were extracted, which served as a base to link and compare them to each other. As a result, we can conclude that: (1) instead of using simple machine learning techniques, currently, the authors apply advanced and sophisticated techniques, (2) China was the leading country in terms of a case study, (3) Particulate matter with diameter equal to 2.5 micrometers was the main prediction target, (4) in 41% of the publications the authors carried out the prediction for the next day, (5) 66% of the studies used data had an hourly rate, (6) 49% of the papers used open data and since 2016 it had a tendency to increase, and (7) for efficient air quality prediction it is important to consider the external factors such as weather conditions, spatial characteristics, and temporal features
    corecore