200 research outputs found

    Semantic validation of affinity constrained service function chain requests

    Get PDF
    Network Function Virtualization (NFV) has been proposed as a paradigm to increase the cost-efficiency, flexibility and innovation in network service provisioning. By leveraging IT virtualization techniques in combination with programmable networks, NFV is able to decouple network functionality from the physical devices on which they are deployed. This opens up new business opportunities for both Infrastructure Providers (InPs) as well as Service Providers (SPs), where the SP can request to deploy a chain of Virtual Network Functions (VNFs) on top of which its service can run. However, current NFV approaches lack the possibility for SPs to define location requirements and constraints on the mapping of virtual functions and paths onto physical hosts and links. Nevertheless, many scenarios can be envisioned in which the SP would like to attach placement constraints for efficiency, resilience, legislative, privacy and economic reasons. Therefore, we propose a set of affinity and anti-affinity constraints, which can be used by SPs to define such placement restrictions. This newfound ability to add constraints to Service Function Chain (SFC) requests also introduces an additional risk that SFCs with conflicting constraints are requested or automatically generated. Therefore, a framework is proposed that allows the InP to check the validity of a set of constraints and provide feedback to the SP. To achieve this, the SFC request and relevant information on the physical topology are modeled as an ontology of which the consistency can be checked using a semantic reasoner. Enabling semantic validation of SFC requests, eliminates inconsistent SFCs requests from being transferred to the embedding algorithm.Peer Reviewe

    Towards delay-aware container-based Service Function Chaining in Fog Computing

    Get PDF
    Recently, the fifth-generation mobile network (5G) is getting significant attention. Empowered by Network Function Virtualization (NFV), 5G networks aim to support diverse services coming from different business verticals (e.g. Smart Cities, Automotive, etc). To fully leverage on NFV, services must be connected in a specific order forming a Service Function Chain (SFC). SFCs allow mobile operators to benefit from the high flexibility and low operational costs introduced by network softwarization. Additionally, Cloud computing is evolving towards a distributed paradigm called Fog Computing, which aims to provide a distributed cloud infrastructure by placing computational resources close to end-users. However, most SFC research only focuses on Multi-access Edge Computing (MEC) use cases where mobile operators aim to deploy services close to end-users. Bi-directional communication between Edges and Cloud are not considered in MEC, which in contrast is highly important in a Fog environment as in distributed anomaly detection services. Therefore, in this paper, we propose an SFC controller to optimize the placement of service chains in Fog environments, specifically tailored for Smart City use cases. Our approach has been validated on the Kubernetes platform, an open-source orchestrator for the automatic deployment of micro-services. Our SFC controller has been implemented as an extension to the scheduling features available in Kubernetes, enabling the efficient provisioning of container-based SFCs while optimizing resource allocation and reducing the end-to-end (E2E) latency. Results show that the proposed approach can lower the network latency up to 18% for the studied use case while conserving bandwidth when compared to the default scheduling mechanism

    System architecture and deployment scenarios for SESAME: small cEllS coordinAtion for Multi-tenancy and Edge services

    Get PDF
    The surge of the Internet traffic with exabytes of data flowing over operators’ mobile networks has created the need to rethink the paradigms behind the design of the mobile network architecture. The inadequacy of the 4G UMTS Long term Evolution (LTE) and even of its advanced version LTE-A is evident, considering that the traffic will be extremely heterogeneous in the near future and ranging from 4K resolution TV to machine-type communications. To keep up with these changes, academia, industries and EU institutions have now engaged in the quest for new 5G technology. In this paper we present the innovative system design, concepts and visions developed by the 5G PPP H2020 project SESAME (Small cEllS coordinAtion for Multi-tenancy and Edge services). The innovation of SESAME is manifold: i) combine the key 5G small cells with cloud technology, ii) promote and develop the concept of Small Cells-as-a-Service (SCaaS), iii) bring computing and storage power at the mobile network edge through the development of non-x86 ARM technology enabled micro-servers, and iv) address a large number of scenarios and use cases applying mobile edge computing

    Definition and specification of connectivity and QoE/QoS management mechanisms – final report

    Get PDF
    This document summarizes the WP5 work throughout the project, describing its functional architecture and the solutions that implement the WP5 concepts on network control and orchestration. For this purpose, we defined 3 innovative controllers that embody the network slicing and multi tenancy: SDM-C, SDM-X and SDM-O. The functionalities of each block are detailed with the interfaces connecting them and validated through exemplary network processes, highlighting thus 5G NORMA innovations. All the proposed modules are designed to implement the functionality needed to provide the challenging KPIs required by future 5G networks while keeping the largest possible compatibility with the state of the art

    Algorithms for advance bandwidth reservation in media production networks

    Get PDF
    Media production generally requires many geographically distributed actors (e.g., production houses, broadcasters, advertisers) to exchange huge amounts of raw video and audio data. Traditional distribution techniques, such as dedicated point-to-point optical links, are highly inefficient in terms of installation time and cost. To improve efficiency, shared media production networks that connect all involved actors over a large geographical area, are currently being deployed. The traffic in such networks is often predictable, as the timing and bandwidth requirements of data transfers are generally known hours or even days in advance. As such, the use of advance bandwidth reservation (AR) can greatly increase resource utilization and cost efficiency. In this paper, we propose an Integer Linear Programming formulation of the bandwidth scheduling problem, which takes into account the specific characteristics of media production networks, is presented. Two novel optimization algorithms based on this model are thoroughly evaluated and compared by means of in-depth simulation results
    • …
    corecore