104 research outputs found

    Power management and control stategies of renewable energy resources for micro-grid application

    Get PDF
    Microgrids (MGs) have become an increasingly familiar power sector feature in recent years and goes through the increase of renewable energies penetration. MG is defined as a group of interconnected loads and multiple distributed generators that is able to operate in grid-connected or islanding mode. Recent reports claim dramatic growth in projects planned for hundreds of GWs worldwide. Notably, following to many natural disasters, the concept of MG and its perceived benefits shifted beyond economic and environmental goals towards resilience. Consequently, MGs have begun to find a natural place in the regulatory and policy arena. Remote areas, facilities with low-quality local energy resources and critical infrastructure are all potential need the MGs solution. However, MGs have some disadvantages as the complexity of control and integration to keep the power quality to acceptable standards. The energy storage system requires more space and maintenance. Finally, protection is one of the important challenges facing the implementation of MGs. The present doctoral research is based on the philosophy of MGs for optimal integration and power management in an effective and efficient way to provide a sustainable and reliable power supply to consumers while reducing the overall cost. This work proposes a novel control strategies and design approaches of micro-grids for remote areas and grid connected system in which both the reliability of continuous power supply and power quality issues are treated. Moreover, this thesis also introduces the concept of Net Zero Energy House in which the system is designed in such a way that the house produces as much energy as it consumes over the year. Many controls algorithms have been investigated in order to find the best way to reduce the sensors’ number and the degree of control complexity while keeping better power quality as well as the system reliability. The developed concept is successfully validated through simulation as well as extensive experimental investigations. Particular attention is paid to the optimal integration of MGs based on the climate data of Central African States

    Load frequency controllers considering renewable energy integration in power system

    Get PDF
    Abstract: Load frequency control or automatic generation control is one of the main operations that take place daily in a modern power system. The objectives of load frequency control are to maintain power balance between interconnected areas and to control the power flow in the tie-lines. Electric power cannot be stored in large quantity that is why its production must be equal to the consumption in each time. This equation constitutes the key for a good management of any power system and introduces the need of more controllers when taking into account the integration of renewable energy sources into the traditional power system. There are many controllers presented in the literature and this work reviews the traditional load frequency controllers and those, which combined the traditional controller and artificial intelligence algorithms for controlling the load frequency

    Supervisory control for power management of an islanded AC microgrid using frequency signalling-based fuzzy logic controller

    Get PDF
    In islanded AC microgrids consisting of renewable energy sources (RES), battery-based energy storage system (BESS), and loads, the BESS balances the difference between the RES power and loads by delivering/absorbing that difference. However, the state of charge (SOC) and charging/discharging power of the battery should be kept within their design limits regardless of variations in the load demand or the intermittent power of the RES. In this paper, a supervisory controller based on fuzzy logic is proposed to assure that the battery power and energy do not exceed their design limits and maintaining a stable power flow. The microgrid considered in this paper consists of a PV, battery, load and auxiliary supplementary unit. The fuzzy logic controller alters the AC bus frequency, which is used by the local controllers of the parallel units to curtail the power generated by the PV or to supplement the power from the auxiliary unit. The proposed FLC performance is verified by simulation and experimental results. IEE

    Review on Control of DC Microgrids and Multiple Microgrid Clusters

    Get PDF
    This paper performs an extensive review on control schemes and architectures applied to dc microgrids (MGs). It covers multilayer hierarchical control schemes, coordinated control strategies, plug-and-play operations, stability and active damping aspects, as well as nonlinear control algorithms. Islanding detection, protection, and MG clusters control are also briefly summarized. All the mentioned issues are discussed with the goal of providing control design guidelines for dc MGs. The future research challenges, from the authors' point of view, are also provided in the final concluding part

    Novel Control Strategies for Parallel-Connected Inverters in AC Microgrids

    Get PDF

    Smart electric vehicle charging strategy in direct current microgrid

    Get PDF
    This thesis proposes novel electric vehicle (EV) charging strategies in DC microgrid (DCMG) for integrating network loads, EV charging/discharging and dispatchable generators (DGs) using droop control within DCMG. A novel two-stage optimization framework is deployed, which optimizes power flow in the network using droop control within DCMG and solves charging tasks with a modified Djistra algorithm. Charging tasks here are modeled as the shortest path problem considering system losses and battery degradation from the distribution system operator (DSO) and electric vehicles aggregator (EVA) respectively. Furthermore, a probabilistic distribution model is proposed to investigate the EV stochastic behaviours for a charging station including time-of-arrival (TOA), time-of-departure(TOD) and energy-to-be-charged (ETC) as well as the coupling characteristic between these parameters. Markov Chain Monte Carlo (MCMC) method is employed to establish a multi-dimension probability distribution for those load profiles and further tests show the scheme is suitable for decentralized computing of its low burn-in request, fast convergent and good parallel acceleration performance. Following this, a three-stage stochastic EV charging strategy is designed to plug the probabilistic distribution model into the optimization framework, which becomes the first stage of the framework. Subsequently, an optimal power flow (OPF) model in the DCMG is deployed where the previous deterministic model is deployed in the second stage which stage one and stage two are combined as a chance-constrained problem in stage three and solved as a random walk problem. Finally, this thesis investigates the value of EV integration in the DCMG. The results obtained show that with smart control of EV charging/discharging, not only EV charging requests can be satisfied, but also network performance like peak valley difference can be improved by ancillary services. Meanwhile, both system loss and battery degradation from DSO and EVA can be minimized.Open Acces

    Particle swarm optimised fuzzy controller for charging–discharging and scheduling of battery energy storage system in MG applications

    Full text link
    © 2020 The Authors Aiming at reducing the power consumption and costs of grids, this paper deals with the development of particle swarm optimisation (PSO) based fuzzy logic controller (FLC) for charging–discharging and scheduling of the battery energy storage systems (ESSs) in microgrid (MG) applications. Initially, FLC was developed to control the charging–discharging of the storage system to avoid mathematical calculation of the conventional system. However, to improve the charging–discharging control, the membership function of the FLC is optimised using PSO technique considering the available power, load demand, battery temperature and state of charge (SOC). The scheduling controller is the optimal solution to achieve low-cost uninterrupted reliable power according to the loads. To reduce the grid power demand and consumption costs, an optimal binary PSO is also introduced to schedule the ESS, grid and distributed sources under various load conditions at different times of the day. The obtained results proved that the robustness of the developed PSO based fuzzy control can effectively manage the battery charging–discharging with reducing the significant grid power consumption of 42.26% and the costs of the energy usage by 45.11% which also demonstrates the contribution of the research

    Inter-Microgrid Operation: Power Sharing, Frequency Restoration, Seamless Reconnection and Stability Analysis

    Get PDF
    Electrification in the rural areas sometimes become very challenging due to area accessibility and economic concern. Standalone Microgrids (MGs) play a very crucial role in these kinds of a rural area where a large power grid is not available. The intermittent nature of distributed energy sources and the load uncertainties can create a power mismatch and can lead to frequency and voltage drop in rural isolated community MG. In order to avoid this, various intelligent load shedding techniques, installation of micro storage systems and coupling of neighbouring MGs can be adopted. Among these, the coupling of neighbouring MGs is the most feasible in the rural area where large grid power is not available. The interconnection of neighbouring MGs has raised concerns about the safety of operation, protection of critical infrastructure, the efficiency of power-sharing and most importantly, stable mode of operation. Many advanced control techniques have been proposed to enhance the load sharing and stability of the microgrid. Droop control is the most commonly used control technique for parallel operation of converters in order to share the load among the MGs. But most of them are in the presence of large grid power, where system voltage and frequency are controlled by the stiff grid. In a rural area, where grid power is not available, the frequency and voltage control become a fundamental issue to be addressed. Moreover, for accurate load sharing a high value of droop gain should be chosen as the R/X ratio of the rural network is very high, which makes the system unstable. Therefore, the choice of droop gains is often a trade-off between power-sharing and stability. In the context, the main focus of this PhD thesis is the fundamental investigations into control techniques of inverter-based standalone neighbouring microgrids for available power sharing. It aims to develop new and improved control techniques to enhance performance and power-sharing reliability of remote standalone Microgrids. In this thesis, a power management-based droop control is proposed for accurate power sharing according to the power availability in a particular MG. Inverters can have different power setpoints during the grid-connected mode, but in the standalone mode, they all need their power setpoints to be adjusted according to their power ratings. On the basis of this, a power management-based droop control strategy is developed to achieve the power-sharing among the neighbouring microgrids. The proposed method helps the MG inverters to share the power according to its ratings and availability, which does not restrict the inverters for equal power-sharing. The paralleled inverters in coupled MGs need to work in both interconnected mode and standalone mode and should be able to transfer between modes seamlessly. An enhanced droop control is proposed to maintain the frequency and voltage of the MGs to their nominal value, which also helps the neighbouring MGs for seamless (de)coupling. This thesis also presents a mathematical model of the interconnected neighbouring microgrid for stability and robustness analysis. Finally, a laboratory prototype model of two MGs is developed to test the effectiveness of the proposed control strategies

    Effect of State Feedback Coupling on the Design of Voltage Source Inverters for Standalone Applications

    Get PDF
    This Ph.D. thesis aims at investigating the effect of state feedback cross‐coupling decoupling of the capacitor voltage on the dynamics performance of Voltage Source Inverters for standalone microgrids/Uninterruptible Power Supply systems. Computation and PWM delays are the main factors which limit the achievable bandwidth of current regulators in digital implementations. In particular, the performance of state feedback decoupling is degraded because of these delays. Two decoupling techniques aimed at improving the transient response of voltage and current regulators are investigated, named nonideal and ideal capacitor voltage decoupling respectively. In particular, the latter solution consists in leading the capacitor voltage on the state feedback decoupling path in order to compensate for system delays. Practical implementation issues are discussed with reference to both the decoupling techniques. Moreover, different resonant regulators structures for the inner current loop are analysed and compared to investigate which is the most suitable for standalone microgrid applications. A design methodology for the voltage loop, which considers the closed loop transfer functions developed for the inner current loop, is also provided. Proportional resonant voltage controllers tuned at specific harmonic frequencies are designed according to the Nyquist criterion taking into account application requirements. For this purpose, a mathematical expression based on root locus analysis is proposed to find the minimum value of the resonant gain at the fundamental frequency. The exact model of the output LC filter of a three‐phase inverter is derived in the z‐domain. The devised formulation allows the comparison of two techniques based on a lead compensator and Smith predictor structure. These solutions permit the bandwidth of the current regulator to be widened while still achieving good dynamic performance. As a consequence, the voltage regulator can be designed for a wide bandwidth and even mitigates odd harmonics arising with unbalance loads supply. Discrete‐time domain implementation issues of an anti‐wind up scheme are discussed as well, highlighting the limitations of some discretization methods. Experimental tests performed in accordance to Uninterruptible Power Supply standards verify the theoretical analysis

    Power Electronic Converter Configuration and Control for DC Microgrid Systems

    Get PDF
    • 

    corecore