1,214 research outputs found

    Quality-based Multimodal Classification Using Tree-Structured Sparsity

    Full text link
    Recent studies have demonstrated advantages of information fusion based on sparsity models for multimodal classification. Among several sparsity models, tree-structured sparsity provides a flexible framework for extraction of cross-correlated information from different sources and for enforcing group sparsity at multiple granularities. However, the existing algorithm only solves an approximated version of the cost functional and the resulting solution is not necessarily sparse at group levels. This paper reformulates the tree-structured sparse model for multimodal classification task. An accelerated proximal algorithm is proposed to solve the optimization problem, which is an efficient tool for feature-level fusion among either homogeneous or heterogeneous sources of information. In addition, a (fuzzy-set-theoretic) possibilistic scheme is proposed to weight the available modalities, based on their respective reliability, in a joint optimization problem for finding the sparsity codes. This approach provides a general framework for quality-based fusion that offers added robustness to several sparsity-based multimodal classification algorithms. To demonstrate their efficacy, the proposed methods are evaluated on three different applications - multiview face recognition, multimodal face recognition, and target classification.Comment: To Appear in 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2014

    Multimodal Subspace Support Vector Data Description

    Get PDF
    In this paper, we propose a novel method for projecting data from multiple modalities to a new subspace optimized for one-class classification. The proposed method iteratively transforms the data from the original feature space of each modality to a new common feature space along with finding a joint compact description of data coming from all the modalities. For data in each modality, we define a separate transformation to map the data from the corresponding feature space to the new optimized subspace by exploiting the available information from the class of interest only. We also propose different regularization strategies for the proposed method and provide both linear and non-linear formulations. The proposed Multimodal Subspace Support Vector Data Description outperforms all the competing methods using data from a single modality or fusing data from all modalities in four out of five datasets.Comment: 26 pages manuscript (6 tables, 2 figures), 24 pages supplementary material (27 tables, 10 figures). The manuscript and supplementary material are combined as a single .pdf (50 pages) fil

    Identifying Humans by the Shape of Their Heartbeats and Materials by Their X-Ray Scattering Profiles

    Get PDF
    Security needs at access control points presents itself in the form of human identification and/or material identification. The field of Biometrics deals with the problem of identifying individuals based on the signal measured from them. One approach to material identification involves matching their x-ray scattering profiles with a database of known materials. Classical biometric traits such as fingerprints, facial images, speech, iris and retinal scans are plagued by potential circumvention they could be copied and later used by an impostor. To address this problem, other bodily traits such as the electrical signal acquired from the brain (electroencephalogram) or the heart (electrocardiogram) and the mechanical signals acquired from the heart (heart sound, laser Doppler vibrometry measures of the carotid pulse) have been investigated. These signals depend on the physiology of the body, and require the individual to be alive and present during acquisition, potentially overcoming circumvention. We investigate the use of the electrocardiogram (ECG) and carotid laser Doppler vibrometry (LDV) signal, both individually and in unison, for biometric identity recognition. A parametric modeling approach to system design is employed, where the system parameters are estimated from training data. The estimated model is then validated using testing data. A typical identity recognition system can operate in either the authentication (verification) or identification mode. The performance of the biometric identity recognition systems is evaluated using receiver operating characteristic (ROC) or detection error tradeoff (DET) curves, in the authentication mode, and cumulative match characteristic (CMC) curves, in the identification mode. The performance of the ECG- and LDV-based identity recognition systems is comparable, but is worse than those of classical biometric systems. Authentication performance below 1% equal error rate (EER) can be attained when the training and testing data are obtained from a single measurement session. When the training and testing data are obtained from different measurement sessions, allowing for a potential short-term or long-term change in the physiology, the authentication EER performance degrades to about 6 to 7%. Leveraging both the electrical (ECG) and mechanical (LDV) aspects of the heart, we obtain a performance gain of over 50%, relative to each individual ECG-based or LDV-based identity recognition system, bringing us closer to the performance of classical biometrics, with the added advantage of anti-circumvention. We consider the problem of designing combined x-ray attenuation and scatter systems and the algorithms to reconstruct images from the systems. As is the case within a computational imaging framework, we tackle the problem by taking a joint system and algorithm design approach. Accurate modeling of the attenuation of incident and scattered photons within a scatter imaging setup will ultimately lead to more accurate estimates of the scatter densities of an illuminated object. Such scattering densities can then be used in material classification. In x-ray scatter imaging, tomographic measurements of the forward scatter distribution are used to infer scatter densities within a volume. A mask placed between the object and the detector array provides information about scatter angles. An efficient computational implementation of the forward and backward model facilitates iterative algorithms based upon a Poisson log-likelihood. The design of the scatter imaging system influences the algorithmic choices we make. In turn, the need for efficient algorithms guides the system design. We begin by analyzing an x-ray scatter system fitted with a fanbeam source distribution and flat-panel energy-integrating detectors. Efficient algorithms for reconstructing object scatter densities from scatter measurements made on this system are developed. Building on the fanbeam source, energy-integrating at-panel detection model, we develop a pencil beam model and an energy-sensitive detection model. The scatter forward models and reconstruction algorithms are validated on simulated, Monte Carlo, and real data. We describe a prototype x-ray attenuation scanner, co-registered with the scatter system, which was built to provide complementary attenuation information to the scatter reconstruction and present results of applying alternating minimization reconstruction algorithms on measurements from the scanner

    A Survey on Ear Biometrics

    No full text
    Recognizing people by their ear has recently received significant attention in the literature. Several reasons account for this trend: first, ear recognition does not suffer from some problems associated with other non contact biometrics, such as face recognition; second, it is the most promising candidate for combination with the face in the context of multi-pose face recognition; and third, the ear can be used for human recognition in surveillance videos where the face may be occluded completely or in part. Further, the ear appears to degrade little with age. Even though, current ear detection and recognition systems have reached a certain level of maturity, their success is limited to controlled indoor conditions. In addition to variation in illumination, other open research problems include hair occlusion; earprint forensics; ear symmetry; ear classification; and ear individuality. This paper provides a detailed survey of research conducted in ear detection and recognition. It provides an up-to-date review of the existing literature revealing the current state-of-art for not only those who are working in this area but also for those who might exploit this new approach. Furthermore, it offers insights into some unsolved ear recognition problems as well as ear databases available for researchers

    Face Image and Video Analysis in Biometrics and Health Applications

    Get PDF
    Computer Vision (CV) enables computers and systems to derive meaningful information from acquired visual inputs, such as images and videos, and make decisions based on the extracted information. Its goal is to acquire, process, analyze, and understand the information by developing a theoretical and algorithmic model. Biometrics are distinctive and measurable human characteristics used to label or describe individuals by combining computer vision with knowledge of human physiology (e.g., face, iris, fingerprint) and behavior (e.g., gait, gaze, voice). Face is one of the most informative biometric traits. Many studies have investigated the human face from the perspectives of various different disciplines, ranging from computer vision, deep learning, to neuroscience and biometrics. In this work, we analyze the face characteristics from digital images and videos in the areas of morphing attack and defense, and autism diagnosis. For face morphing attacks generation, we proposed a transformer based generative adversarial network to generate more visually realistic morphing attacks by combining different losses, such as face matching distance, facial landmark based loss, perceptual loss and pixel-wise mean square error. In face morphing attack detection study, we designed a fusion-based few-shot learning (FSL) method to learn discriminative features from face images for few-shot morphing attack detection (FS-MAD), and extend the current binary detection into multiclass classification, namely, few-shot morphing attack fingerprinting (FS-MAF). In the autism diagnosis study, we developed a discriminative few shot learning method to analyze hour-long video data and explored the fusion of facial dynamics for facial trait classification of autism spectrum disorder (ASD) in three severity levels. The results show outstanding performance of the proposed fusion-based few-shot framework on the dataset. Besides, we further explored the possibility of performing face micro- expression spotting and feature analysis on autism video data to classify ASD and control groups. The results indicate the effectiveness of subtle facial expression changes on autism diagnosis

    Information Theoretic Methods For Biometrics, Clustering, And Stemmatology

    Get PDF
    This thesis consists of four parts, three of which study issues related to theories and applications of biometric systems, and one which focuses on clustering. We establish an information theoretic framework and the fundamental trade-off between utility of biometric systems and security of biometric systems. The utility includes person identification and secret binding, while template protection, privacy, and secrecy leakage are security issues addressed. A general model of biometric systems is proposed, in which secret binding and the use of passwords are incorporated. The system model captures major biometric system designs including biometric cryptosystems, cancelable biometrics, secret binding and secret generating systems, and salt biometric systems. In addition to attacks at the database, information leakage from communication links between sensor modules and databases is considered. A general information theoretic rate outer bound is derived for characterizing and comparing the fundamental capacity, and security risks and benefits of different system designs. We establish connections between linear codes to biometric systems, so that one can directly use a vast literature of coding theories of various noise and source random processes to achieve good performance in biometric systems. We develop two biometrics based on laser Doppler vibrometry: LDV) signals and electrocardiogram: ECG) signals. For both cases, changes in statistics of biometric traits of the same individual is the major challenge which obstructs many methods from producing satisfactory results. We propose a ii robust feature selection method that specifically accounts for changes in statistics. The method yields the best results both in LDV and ECG biometrics in terms of equal error rates in authentication scenarios. Finally, we address a different kind of learning problem from data called clustering. Instead of having a set of training data with true labels known as in identification problems, we study the problem of grouping data points without labels given, and its application to computational stemmatology. Since the problem itself has no true answer, the problem is in general ill-posed unless some regularization or norm is set to define the quality of a partition. We propose the use of minimum description length: MDL) principle for graphical based clustering. In the MDL framework, each data partitioning is viewed as a description of the data points, and the description that minimizes the total amount of bits to describe the data points and the model itself is considered the best model. We show that in synthesized data the MDL clustering works well and fits natural intuition of how data should be clustered. Furthermore, we developed a computational stemmatology method based on MDL, which achieves the best performance level in a large dataset
    corecore