680 research outputs found

    Technology Mapping, Design for Testability, and Circuit Optimizations for NULL Convention Logic Based Architectures

    Get PDF
    Delay-insensitive asynchronous circuits have been the target of a renewed research effort because of the advantages they offer over traditional synchronous circuits. Minimal timing analysis, inherent robustness against power-supply, temperature, and process variations, reduced energy consumption, less noise and EMI emission, and easy design reuse are some of the benefits of these circuits. NULL Convention Logic (NCL) is one of the mainstream asynchronous logic design paradigms that has been shown to be a promising method for designing delay-insensitive asynchronous circuits. This dissertation investigates new areas in NCL design and test and is made of three sections. The first section discusses different CMOS implementations of NCL gates and proposes new circuit techniques to enhance their operation. The second section focuses on mapping multi-rail logic expressions to a standard NCL gate library, which is a form of technology mapping for a category of NCL design automation flows. Finally, the last section proposes design for testability techniques for a recently developed low-power variant of NCL called Sleep Convention Logic (SCL)

    Asynchronous 3D (Async3D): Design Methodology and Analysis of 3D Asynchronous Circuits

    Get PDF
    This dissertation focuses on the application of 3D integrated circuit (IC) technology on asynchronous logic paradigms, mainly NULL Convention Logic (NCL) and Multi-Threshold NCL (MTNCL). It presents the Async3D tool flow and library for NCL and MTNCL 3D ICs. It also analyzes NCL and MTNCL circuits in 3D IC. Several FIR filter designs were implement in NCL, MTNCL, and synchronous architecture to compare synchronous and asynchronous circuits in 2D and 3D ICs. The designs were normalized based on performance and several metrics were measured for comparison. Area, interconnect length, power consumption, and power density were compared among NCL, MTNCL, and synchronous designs. The NCL and MTNCL designs showed improvements in all metrics when moving from 2D to 3D. The 3D NCL and MTNCL designs also showed a balanced power distribution in post-layout analysis. This could alleviate the hotspot problem prevalently found in most 3D ICs. NCL and MTNCL have the potential to synergize well with 3D IC technology

    Adaptive time-integration for goal-oriented and coupled problems

    Get PDF
    We consider efficient methods for the partitioned time-integration of multiphysics problems, which commonly exhibit a multiscale behavior, requiring independent time-grids. Examples are fluid structure interaction in e.g., the simulation of blood-flow or cooling of rocket engines, or ocean-atmosphere-vegetation interaction. The ideal method for solving these problems allows independent and adaptive time-grids, higher order time-discretizations, is fast and robust, and allows the coupling of existing subsolvers, executed in parallel. We consider Waveform relaxation (WR) methods, which can have all of these properties. WR methods iterate on continuous-in-time interface functions, obtained via suitable interpolation. The difficulty is to find suitable convergence acceleration, which is required for the iteration converge quickly. We develop a fast and highly robust, second order in time, adaptive WR method for unsteady thermal fluid structure interaction (FSI), modelled by heterogeneous coupled linear heat equations. We use a Dirichlet-Neumann coupling at the interface and an analytical optimal relaxation parameter derived for the fully-discrete scheme. While this method is sequential, it is notably faster and more robust than similar parallel methods.We further develop a novel, parallel WR method, using asynchronous communication techniques during time-integration to accelerate convergence. Instead of exchanging interpolated time-dependent functions at the end of each time-window or iteration, we exchange time-point data immediately after each timestep. The analytical description and convergence results of this method generalize existing WR theory.Since WR methods allow coupling of problems in a relative black-box manner, we developed adapters to PDE-subsolvers implemented using DUNE and FEniCS. We demonstrate this coupling in a thermal FSI test case.Lastly, we consider adaptive time-integration for goal-oriented problems, where one is interested in a quantity of interest (QoI), which is a functional of the solution. The state-of-the-art method is the dual-weighted residual (DWR) method, which is extremely costly in both computation and implementation. We develop a goal oriented adaptive method based on local error estimates, which is considerably cheaper in computation. We prove convergence of the error in the QoI for tolerance to zero under a controllability assumption. By analyzing global error propagation with respect to the QoI, we can identify possible issues and make performance predictions. Numerical results verify these results and show our method to be more efficient than the DWR method

    Dynamical Systems in Spiking Neuromorphic Hardware

    Get PDF
    Dynamical systems are universal computers. They can perceive stimuli, remember, learn from feedback, plan sequences of actions, and coordinate complex behavioural responses. The Neural Engineering Framework (NEF) provides a general recipe to formulate models of such systems as coupled sets of nonlinear differential equations and compile them onto recurrently connected spiking neural networks – akin to a programming language for spiking models of computation. The Nengo software ecosystem supports the NEF and compiles such models onto neuromorphic hardware. In this thesis, we analyze the theory driving the success of the NEF, and expose several core principles underpinning its correctness, scalability, completeness, robustness, and extensibility. We also derive novel theoretical extensions to the framework that enable it to far more effectively leverage a wide variety of dynamics in digital hardware, and to exploit the device-level physics in analog hardware. At the same time, we propose a novel set of spiking algorithms that recruit an optimal nonlinear encoding of time, which we call the Delay Network (DN). Backpropagation across stacked layers of DNs dramatically outperforms stacked Long Short-Term Memory (LSTM) networks—a state-of-the-art deep recurrent architecture—in accuracy and training time, on a continuous-time memory task, and a chaotic time-series prediction benchmark. The basic component of this network is shown to function on state-of-the-art spiking neuromorphic hardware including Braindrop and Loihi. This implementation approaches the energy-efficiency of the human brain in the former case, and the precision of conventional computation in the latter case
    • …
    corecore