118 research outputs found

    Driver helper dispatching problems: Three essays

    Get PDF
    The driver helper dispatching problems (DHDPs) have received scant research attention in past literature. In this three essay format dissertation, we proposed two ideas: 1) minimizing of the total cost as the new objective function to replace minimizing the total distance cost that is mostly used in past traveling salesman problem (TSP) and vehicle routing problem (VRP) algorithms and 2) dispatching vehicle either with a helper or not as part of the routing decision. The first study shows that simply separating a single with-helper route into two different types of sub-routes can significantly reduce total costs. It also proposes a new dependent driver helper (DDH) model to boost the utilization rate of the helpers to higher levels. In the second study, a new hybrid driver helper (HDH) model is proposed to solve DHDPs. The proposed HDH model provides the flexibility to relax the constraints that a helper can only work at one predetermined location in current-practice independent driver helper (IDH) model and that a helper always travels with the vehicle in the current-practice DDH model. We conducted a series of full-factorial experiments to prove that the proposed HDH model performs better than both two current solutions in terms of savings in both cost and time. The last study proposes a mathematical model to solve the VRPTW version of DHDPs and conducts a series of full factorial computational experiments. The results show that the proposed model can achieve more cost savings while reducing a similar level of dispatched vehicles as the current-practice DDH solution. All these three studies also investigate the conditions under which the proposed models would work most, or least, effectively

    Small Business Innovation Research. Program solicitation. Closing date: July 21, 1992

    Get PDF
    The National Aeronautics and Space Administration (NASA) invites small businesses to submit Phase 1 proposals in response to its Small Business Innovation Research (SBIR) Program Solicitation 92-1. Firms with research or research and development capabilities (R/R&D) in science or engineering in any of the areas listed are encouraged to participate. This, the tenth annual SBIR solicitation by NASA, describes the program, identifies eligibility requirements, describes the proposal evaluation and award selection process, and provides other information to assist those interested in participating in NASA's SBIR program. It also identifies, in Section 8.0, the technical topics and subtopics in which SBIR Phase 1 proposals are solicited in 1992. These topics and subtopics cover a broad range of current NASA interests but do not necessarily include all areas in which NASA plans or currently conducts research. The NASA SBIR program seeks innovative approaches that respond to the needs, technical requirements, and new opportunities described in the subtopics. The focus is on innovation through the use of emerging technologies, novel applications of existing technologies, exploitation of scientific breakthroughs, or new capabilities or major improvements to existing technologies. NASA plans to select about 320 high-quality research or research and development proposals for Phase 1 contract awards on the basis of this Solicitation. Phase 1 contracts are normally six months in duration and funded up to $50,000, including profit. Selections will be based on the competitive merits of the offers and on NASA needs and priorities

    Coverage & cooperation: Completing complex tasks as quickly as possible using teams of robots

    Get PDF
    As the robotics industry grows and robots enter our homes and public spaces, they are increasingly expected to work in cooperation with each other. My thesis focuses on multirobot planning, specifically in the context of coverage robots, such as robotic lawnmowers and vacuum cleaners. Two problems unique to multirobot teams are task allocation and search. I present a task allocation algorithm which balances the workload amongst all robots in the team with the objective of minimizing the overall mission time. I also present a search algorithm which robots can use to find lost teammates. It uses a probabilistic belief of a target robot’s position to create a planning tree and then searches by following the best path in the tree. For robust multirobot coverage, I use both the task allocation and search algorithms. First the coverage region is divided into a set of small coverage tasks which minimize the number of turns the robots will need to take. These tasks are then allocated to individual robots. During the mission, robots replan with nearby robots to rebalance the workload and, once a robot has finished its tasks, it searches for teammates to help them finish their tasks faster

    Small business innovation research: Program solicitation

    Get PDF
    This, the seventh annual SBIR solicitation by NASA, describes the program, identifies eligibility requirements, outlines the required proposal format and content, states proposal preparation and submission requirements, describes the proposal evaluation and award selection process, and provides other information to assist those interested in participating in NASA's SBIR program. It also identifies the Technical Topics and Subtopics in which SBIR Phase 1 proposals are solicited in 1989. These Topics and Subtopics cover a broad range of current NASA interests, but do not necessarily include all areas in which NASA plans or currently conducts research. High-risk high pay-off innovations are desired

    Space station systems: A bibliography with indexes (supplement 9)

    Get PDF
    This bibliography lists 1,313 reports, articles, and other documents introduced into the NASA scientific and technical information system between January 1, 1989 and June 30, 1989. Its purpose is to provide helpful information to researchers, designers and managers engaged in Space Station technology development and mission design. Coverage includes documents that define major systems and subsystems related to structures and dynamic control, electronics and power supplies, propulsion, and payload integration. In addition, orbital construction methods, servicing and support requirements, procedures and operations, and missions for the current and future Space Station are included
    • …
    corecore