23,753 research outputs found

    Tensor Networks for Big Data Analytics and Large-Scale Optimization Problems

    Full text link
    In this paper we review basic and emerging models and associated algorithms for large-scale tensor networks, especially Tensor Train (TT) decompositions using novel mathematical and graphical representations. We discus the concept of tensorization (i.e., creating very high-order tensors from lower-order original data) and super compression of data achieved via quantized tensor train (QTT) networks. The purpose of a tensorization and quantization is to achieve, via low-rank tensor approximations "super" compression, and meaningful, compact representation of structured data. The main objective of this paper is to show how tensor networks can be used to solve a wide class of big data optimization problems (that are far from tractable by classical numerical methods) by applying tensorization and performing all operations using relatively small size matrices and tensors and applying iteratively optimized and approximative tensor contractions. Keywords: Tensor networks, tensor train (TT) decompositions, matrix product states (MPS), matrix product operators (MPO), basic tensor operations, tensorization, distributed representation od data optimization problems for very large-scale problems: generalized eigenvalue decomposition (GEVD), PCA/SVD, canonical correlation analysis (CCA).Comment: arXiv admin note: text overlap with arXiv:1403.204

    Towards Lattice Quantum Chromodynamics on FPGA devices

    Get PDF
    In this paper we describe a single-node, double precision Field Programmable Gate Array (FPGA) implementation of the Conjugate Gradient algorithm in the context of Lattice Quantum Chromodynamics. As a benchmark of our proposal we invert numerically the Dirac-Wilson operator on a 4-dimensional grid on three Xilinx hardware solutions: Zynq Ultrascale+ evaluation board, the Alveo U250 accelerator and the largest device available on the market, the VU13P device. In our implementation we separate software/hardware parts in such a way that the entire multiplication by the Dirac operator is performed in hardware, and the rest of the algorithm runs on the host. We find out that the FPGA implementation can offer a performance comparable with that obtained using current CPU or Intel's many core Xeon Phi accelerators. A possible multiple node FPGA-based system is discussed and we argue that power-efficient High Performance Computing (HPC) systems can be implemented using FPGA devices only.Comment: 17 pages, 4 figure
    corecore