4,767 research outputs found

    Mapping Chestnut Stands Using Bi-Temporal VHR Data

    Get PDF
    This study analyzes the potential of very high resolution (VHR) remote sensing images and extended morphological profiles for mapping Chestnut stands on Tenerife Island (Canary Islands, Spain). Regarding their relevance for ecosystem services in the region (cultural and provisioning services) the public sector demand up-to-date information on chestnut and a simple straight-forward approach is presented in this study. We used two VHR WorldView images (March and May 2015) to cover different phenological phases. Moreover, we included spatial information in the classification process by extended morphological profiles (EMPs). Random forest is used for the classification process and we analyzed the impact of the bi-temporal information as well as of the spatial information on the classification accuracies. The detailed accuracy assessment clearly reveals the benefit of bi-temporal VHR WorldView images and spatial information, derived by EMPs, in terms of the mapping accuracy. The bi-temporal classification outperforms or at least performs equally well when compared to the classification accuracies achieved by the mono-temporal data. The inclusion of spatial information by EMPs further increases the classification accuracy by 5% and reduces the quantity and allocation disagreements on the final map. Overall the new proposed classification strategy proves useful for mapping chestnut stands in a heterogeneous and complex landscape, such as the municipality of La Orotava, Tenerife

    An improved algorithm for identifying shallow and deep-seated landslides in dense tropical forest from airborne laser scanning data

    Full text link
    © 2018 Landslides are natural disasters that cause environmental and infrastructure damage worldwide. They are difficult to be recognized, particularly in densely vegetated regions of the tropical forest areas. Consequently, an accurate inventory map is required to analyze landslides susceptibility, hazard, and risk. Several studies were done to differentiate between different types of landslide (i.e. shallow and deep-seated); however, none of them utilized any feature selection techniques. Thus, in this study, three feature selection techniques were used (i.e. correlation-based feature selection (CFS), random forest (RF), and ant colony optimization (ACO)). A fuzzy-based segmentation parameter (FbSP optimizer) was used to optimize the segmentation parameters. Random forest (RF) was used to evaluate the performance of each feature selection algorithms. The overall accuracies of the RF classifier revealed that CFS algorithm exhibited higher ranks in differentiation landslide types. Moreover, the results of the transferability showed that this method is easy, accurate, and highly suitable for differentiating between types of landslides (shallow and deep-seated). In summary, the study recommends that the outlined approaches are significant to improve in distinguishing between shallow and deep-seated landslide in the tropical areas, such as; Malaysia

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin
    • …
    corecore