847 research outputs found

    On the control of propagating acoustic waves in sonic crystals: analytical, numerical and optimization techniques

    Get PDF
    El control de las propiedades acústicas de los cristales de sonido (CS) necesita del estudio de la distribución de dispersores en la propia estructura y de las propiedades acústicas intrínsecas de dichos dispersores. En este trabajo se presenta un estudio exhaustivo de diferentes distribuciones, así como el estudio de la mejora de las propiedades acústicas de CS constituidos por dispersores con propiedades absorbentes y/o resonantes. Estos dos procedimientos, tanto independientemente como conjuntamente, introducen posibilidades reales para el control de la propagación de ondas acústicas a través de los CS. Desde el punto de vista teórico, la propagación de ondas a través de estructuras periódicas y quasiperiódicas se ha analizado mediante los métodos de la dispersión múltiple, de la expansión en ondas planas y de los elementos finitos. En este trabajo se presenta una novedosa extensión del método de la expansión en ondas planas que permite obtener las relaciones complejas de dispersión para los CS. Esta técnica complementa la información obtenida por los métodos clásicos y permite conocer el comportamiento evanescente de los modos en el interior de las bandas de propagación prohibida del CS, así como de los modos localizados alrededor de posibles defectos puntuales en CS. La necesidad de medidas precisas de las propiedades acústicas de los CS ha provocado el desarrollo de un novedoso sistema tridimensional que sincroniza el movimiento del receptor y la adquisición de señales temporales. Los resultados experimentales obtenidos en este trabajo muestran una gran similitud con los resultados teóricos. La actuación conjunta de distribuciones de dispersores optimizadas y de las propiedades intrínsecas de éstos, se aplica para la generación de dispositivos que presentan un rango amplio de frecuencias atenuadas. Se presenta una alternativa a las barreras acústicas tradicionales basada en CS donde se puede controlar el paso de ondas a su través. Los resultados ayudan a entender correctamente el funcionamiento de los CS para la localización de sonido, y para el guiado y filtrado de ondas acústicas.Romero García, V. (2010). On the control of propagating acoustic waves in sonic crystals: analytical, numerical and optimization techniques [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/8982Palanci

    Multiple source localization using spherical microphone arrays

    Get PDF
    Direction-of-Arrival (DOA) estimation is a fundamental task in acoustic signal processing and is used in source separation, localization, tracking, environment mapping, speech enhancement and dereverberation. In applications such as hearing aids, robot audition, teleconferencing and meeting diarization, the presence of multiple simultaneously active sources often occurs. Therefore DOA estimation which is robust to Multi-Source (MS) scenarios is of particular importance. In the past decade, interest in Spherical Microphone Arrays (SMAs) has been rapidly grown due to its ability to analyse the sound field with equal resolution in all directions. Such symmetry makes SMAs suitable for applications in robot audition where potential variety of heights and positions of the talkers are expected. Acoustic signal processing for SMAs is often formulated in the Spherical Harmonic Domain (SHD) which describes the sound field in a form that is independent of the geometry of the SMA. DOA estimation methods for the real-world scenarios address one or more performance degrading factors such as noise, reverberation, multi-source activity or tackled problems such as source counting or reducing computational complexity. This thesis addresses various problems in MS DOA estimation for speech sources each of which focuses on one or more performance degrading factor(s). Firstly a narrowband DOA estimator is proposed utilizing high order spatial information in two computationally efficient ways. Secondly, an autonomous source counting technique is proposed which uses density-based clustering in an evolutionary framework. Thirdly, a confidence metric for validity of Single Source (SS) assumption in a Time-Frequency (TF) bin is proposed. It is based on MS assumption in a short time interval where the number and the TF bin of active sources are adaptively estimated. Finally two analytical narrowband MS DOA estimators are proposed based on MS assumption in a TF bin. The proposed methods are evaluated using simulations and real recordings. Each proposed technique outperforms comparative baseline methods and performs at least as accurately as the state-of-the-art.Open Acces

    Applications and enhancements of aircraft design optimization techniques

    No full text
    The aircraft industry has been at the forefront in developing design optimization strategies ever since the advent of high performance computing. Thanks to the large computational resources now available, many new as well as more mature optimization methods have become well established. However, the same cannot be said for other stages along the optimization process - chiefly, and this is where the present thesis seeks to make its first main contribution, at the geometry parameterization stage.The first major part of the thesis is dedicated to the goal of reducing the size of the search space by reducing the dimensionality of existing parameterization schemes, thus improving the effectiveness of search strategies based upon them. Specifically, a refinement to the Kulfan parameterization method is presented, based on using Genetic Programming and a local search within a Baldwinian learning strategy to evolve a set of analytical expressions to replace the standard 'class function' at the basis of the Kulfan method. The method is shown to significantly reduce the number of parameters and improves optimization performance - this is demonstrated using a simple aerodynamic design case study.The second part describes an industrial level case study, combining sophisticated, high fidelity, as well as fast, low fidelity numerical analysis with a complex physical experiment. The objective is the analysis of a topical design question relating to reducing the environmental impact of aviation: what is the optimum layout of an over-the-wing turbofan engine installation designed to enable the airframe to shield near-airport communities on the ground from fan noise. An experiment in an anechoic chamber reveals that a simple half-barrier noise model can be used as a first order approximation to the change of inlet broadband noise shielding by the airframe with engine position, which can be used within design activities. Moreover, the experimental results are condensed into an acoustic shielding performance metric to be used in a Multidisciplinary Design Optimization study, together with drag and engine performance values acquired through CFD. By using surrogate models of these three performance metrics we are able to find a set of non-dominated engine positions comprising a Pareto Front of these objectives. This may give designers of future aircraft an insight into an appropriate engine position above a wing, as well as a template for blending multiple levels of computational analysis with physical experiments into a multidisciplinary design optimization framework

    Using genetic algorithms to optimize the location of transducers for an active noise barrier

    Get PDF
    The effectiveness of an active noise barrier is heavily dependent on the positioning of secondary sources and error sensors. Typically, these components are located at the edge of the barrier; however, research suggests that alternative distributions may improve the performance of the active barrier. This paper utilizes a genetic optimizer to determine optimal transducer locations based on specific criteria. Two approaches are employed: the Two-step approach which, first identifies optimal control source positions and then seeks the best error microphone locations, and the Multi-parameter approach, which optimizes all active noise control parameters simultaneously. The acoustic fields of primary and secondary sources are analyzed for various numbers of control sources progressively increasing from 2 to 10 units. Results indicate that the Multi-parameter approach achieves higher outcomes and requires less computational effort. This approach is more desirable than the Two-step approach. The best configuration for the active noise barrier is determined to be control sources and error microphones placed at a height below the barrier’s edge and are distributed with an interval between a half and a full wavelength. The number of error sensors should be close to the number of secondary sources and both transducers should be placed at the farthest distance from the barrier surface, but oppositely. Furthermore, the study shows that when the primary noise source is close to the barrier adjacent transducers should not be spaced uniformlyThe author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the Agència de Gestió d’Ajuts Universitaris i de Recerca (2020 FI_B2 00073)Postprint (published version

    Active control of noise transmitted from barriers

    Get PDF
    Active noise cancellation is a unique approach that helps passive noise control in reducing sound levels at low frequencies; nevertheless, successful use of active noise cancellation necessitates performing numerous and tedious experiments together with defining several parameters properly. The locations and quantity of active control system transducers are among these parameters. The present research provides a comprehensive framework for placing control sources and error microphones near a noise barrier in order to improve its efficiency in both narrowband and broadband noise spectra. To accomplish this, the appropriate locations for the control sources are first determined using a repetitive computation method, and then the optimizations are completed by determining the best position for the error microphone. Several alternative transducer locations near the barrier are incorporated in the repetitive computation, and the optimal sites for the control sources and error microphones are found using two-step optimization methods as well as the genetic algorithms approach. The findings reveal that the best places to put the control sources are on the incident side, below the barrier's edge, and the best locations to place the error microphones are on the shadow side, as close as possible to the target area. The effect of ground reflection on the efficiency of the active noise control system is also investigated, and it is discovered that while ground reflection has no significant effect on the performance of the active noise control system for broadband frequency ranges, it does reduce the control system's efficiency at tonal noises. In order to optimize more parameters, further calculations are performed based on the genetic optimizer. The output of the GA calculations found new configurations for the control units that result in higher noise level reduction at the target area. In addition to the active noise barrier, the application of active noise cancellation for open windows as a particular case of the barrier is explored as a particular case of the barrier. Different arrangements are studied for the control units close to the open windows, including linear, boundary, and planar control arrangements. The effect of several parameters such as the incident angle of noise waves, the distance between error microphones and the opening, and the number of control units are investigated. The results demonstrate that the active noise control system with obliqued linear placements of transducers have higher performance than the other arrangements. Furthermore, when the frequency and incident angle increase, the effectiveness of active noise reduction decreases.La cancelación activa de ruido es un enfoque único que ayuda al control pasivo del ruido a reducir los niveles de sonido a bajas frecuencias; sin embargo, el uso exitoso de la cancelación activa de ruido requiere la realización de numerosos y tediosos experimentos junto con la definición adecuada de varios parámetros. La ubicación y la cantidad de transductores del sistema de control activo se encuentran entre estos parámetros. La presente investigación proporciona un marco completo para colocar fuentes de control y micrófonos de error cerca de una barrera de ruido con el fin de mejorar su eficiencia en espectros de ruido de banda estrecha y banda ancha. Para lograr esto, primero se determinan las ubicaciones apropiadas para las fuentes de control usando un método de cálculo repetitivo, y luego se completan las optimizaciones determinando la mejor posición para el micrófono de error. Varias ubicaciones de transductores alternativas cerca de la barrera se incorporan en el cálculo repetitivo, y los sitios óptimos para las fuentes de control y los micrófonos de error se encuentran utilizando métodos de optimización de dos pasos, así como el enfoque de algoritmos genéticos. Los hallazgos revelan que los mejores lugares para colocar las fuentes de control están en el lado del incidente, debajo del borde de la barrera, y los mejores lugares para colocar los micrófonos de error están en el lado de la sombra, lo más cerca posible del área objetivo. También se investiga el efecto de la reflexión del suelo sobre la eficiencia del sistema de control de ruido activo, y se descubre que si bien la reflexión del suelo no tiene un efecto significativo en el rendimiento del sistema de control de ruido activo para rangos de frecuencia de banda ancha, sí reduce el rendimiento del sistema de control. eficiencia en ruidos tonales. Para optimizar más parámetros, se realizan más cálculos basadosen el optimizador genético. El resultado de los cálculos de GA encontró nuevas configuraciones para las unidades de control que dan como resultado una mayor reducción del nivel de ruido en el área objetivo. Además de la barrera de ruido activa, se explora la aplicación de la cancelación de ruido activa para ventanas abiertas como un caso particular de la barrera. Se estudian cuatro disposiciones para las unidades de control cercanas a las ventanas abiertas. Las unidades de control en una configuración de límite se colocan en el borde de la abertura, mientras que en el control plano, se ubican en la superficie de la abertura. En una configuración de contorno, las unidades de control se colocan en el borde de la abertura, mientras que en un diseño plano, se colocan en la superficie de la abertura. Se investiga el efecto de varios parámetros como el ángulo de incidencia de las ondas de ruido, la distancia entre los micrófonos de error y la apertura, y el número de unidades de control. Los resultados demuestran que el sistema de control de ruido activo con configuración plana tiene un rendimiento más alto que el control de límites. Además, cuando la frecuencia y el ángulo de incidencia aumentan, la eficacia de la reducción activa del ruido disminuye.Postprint (published version
    corecore