391 research outputs found

    An efficient parallel method for mining frequent closed sequential patterns

    Get PDF
    Mining frequent closed sequential pattern (FCSPs) has attracted a great deal of research attention, because it is an important task in sequences mining. In recently, many studies have focused on mining frequent closed sequential patterns because, such patterns have proved to be more efficient and compact than frequent sequential patterns. Information can be fully extracted from frequent closed sequential patterns. In this paper, we propose an efficient parallel approach called parallel dynamic bit vector frequent closed sequential patterns (pDBV-FCSP) using multi-core processor architecture for mining FCSPs from large databases. The pDBV-FCSP divides the search space to reduce the required storage space and performs closure checking of prefix sequences early to reduce execution time for mining frequent closed sequential patterns. This approach overcomes the problems of parallel mining such as overhead of communication, synchronization, and data replication. It also solves the load balance issues of the workload between the processors with a dynamic mechanism that re-distributes the work, when some processes are out of work to minimize the idle CPU time.Web of Science5174021739

    Algorithms for Extracting Frequent Episodes in the Process of Temporal Data Mining

    Get PDF
    An important aspect in the data mining process is the discovery of patterns having a great influence on the studied problem. The purpose of this paper is to study the frequent episodes data mining through the use of parallel pattern discovery algorithms. Parallel pattern discovery algorithms offer better performance and scalability, so they are of a great interest for the data mining research community. In the following, there will be highlighted some parallel and distributed frequent pattern mining algorithms on various platforms and it will also be presented a comparative study of their main features. The study takes into account the new possibilities that arise along with the emerging novel Compute Unified Device Architecture from the latest generation of graphics processing units. Based on their high performance, low cost and the increasing number of features offered, GPU processors are viable solutions for an optimal implementation of frequent pattern mining algorithmsFrequent Pattern Mining, Parallel Computing, Dynamic Load Balancing, Temporal Data Mining, CUDA, GPU, Fermi, Thread

    Frequent itemset mining on multiprocessor systems

    Get PDF
    Frequent itemset mining is an important building block in many data mining applications like market basket analysis, recommendation, web-mining, fraud detection, and gene expression analysis. In many of them, the datasets being mined can easily grow up to hundreds of gigabytes or even terabytes of data. Hence, efficient algorithms are required to process such large amounts of data. In recent years, there have been many frequent-itemset mining algorithms proposed, which however (1) often have high memory requirements and (2) do not exploit the large degrees of parallelism provided by modern multiprocessor systems. The high memory requirements arise mainly from inefficient data structures that have only been shown to be sufficient for small datasets. For large datasets, however, the use of these data structures force the algorithms to go out-of-core, i.e., they have to access secondary memory, which leads to serious performance degradations. Exploiting available parallelism is further required to mine large datasets because the serial performance of processors almost stopped increasing. Algorithms should therefore exploit the large number of available threads and also the other kinds of parallelism (e.g., vector instruction sets) besides thread-level parallelism. In this work, we tackle the high memory requirements of frequent itemset mining twofold: we (1) compress the datasets being mined because they must be kept in main memory during several mining invocations and (2) improve existing mining algorithms with memory-efficient data structures. For compressing the datasets, we employ efficient encodings that show a good compression performance on a wide variety of realistic datasets, i.e., the size of the datasets is reduced by up to 6.4x. The encodings can further be applied directly while loading the dataset from disk or network. Since encoding and decoding is repeatedly required for loading and mining the datasets, we reduce its costs by providing parallel encodings that achieve high throughputs for both tasks. For a memory-efficient representation of the mining algorithms’ intermediate data, we propose compact data structures and even employ explicit compression. Both methods together reduce the intermediate data’s size by up to 25x. The smaller memory requirements avoid or delay expensive out-of-core computation when large datasets are mined. For coping with the high parallelism provided by current multiprocessor systems, we identify the performance hot spots and scalability issues of existing frequent-itemset mining algorithms. The hot spots, which form basic building blocks of these algorithms, cover (1) counting the frequency of fixed-length strings, (2) building prefix trees, (3) compressing integer values, and (4) intersecting lists of sorted integer values or bitmaps. For all of them, we discuss how to exploit available parallelism and provide scalable solutions. Furthermore, almost all components of the mining algorithms must be parallelized to keep the sequential fraction of the algorithms as small as possible. We integrate the parallelized building blocks and components into three well-known mining algorithms and further analyze the impact of certain existing optimizations. Our algorithms are already single-threaded often up an order of magnitude faster than existing highly optimized algorithms and further scale almost linear on a large 32-core multiprocessor system. Although our optimizations are intended for frequent-itemset mining algorithms, they can be applied with only minor changes to algorithms that are used for mining of other types of itemsets

    Scalable frequent itemset mining on many-core processors

    Get PDF
    Frequent-itemset mining is an essential part of the association rule mining process, which has many application areas. It is a computation and memory intensive task with many opportunities for optimization. Many efficient sequential and parallel algorithms were proposed in the recent years. Most of the parallel algorithms, however, cannot cope with the huge number of threads that are provided by large multiprocessor or many-core systems. In this paper, we provide a highly parallel version of the well-known Eclat algorithm. It runs on both, multiprocessor systems and many-core coprocessors, and scales well up to a very large number of threads---244 in our experiments. To evaluate mcEclat's performance, we conducted many experiments on realistic datasets. mcEclat achieves high speedups of up to 11.5x and 100x on a 12-core multiprocessor system and a 61-core Xeon Phi many-core coprocessor, respectively. Furthermore, mcEclat is competitive with highly optimized existing frequent-itemset mining implementations taken from the FIMI repository

    A New Data Layout For Set Intersection on GPUs

    Full text link
    Set intersection is the core in a variety of problems, e.g. frequent itemset mining and sparse boolean matrix multiplication. It is well-known that large speed gains can, for some computational problems, be obtained by using a graphics processing unit (GPU) as a massively parallel computing device. However, GPUs require highly regular control flow and memory access patterns, and for this reason previous GPU methods for intersecting sets have used a simple bitmap representation. This representation requires excessive space on sparse data sets. In this paper we present a novel data layout, "BatMap", that is particularly well suited for parallel processing, and is compact even for sparse data. Frequent itemset mining is one of the most important applications of set intersection. As a case-study on the potential of BatMaps we focus on frequent pair mining, which is a core special case of frequent itemset mining. The main finding is that our method is able to achieve speedups over both Apriori and FP-growth when the number of distinct items is large, and the density of the problem instance is above 1%. Previous implementations of frequent itemset mining on GPU have not been able to show speedups over the best single-threaded implementations.Comment: A version of this paper appears in Proceedings of IPDPS 201
    corecore