178,024 research outputs found

    Update on the Development of a Flutter Analysis Capability for Unconventional Aircraft Concepts Using HCDstruct

    Get PDF
    Following years of development, the Higher-fidelity Conceptual Design and structural optimization (HCDstruct) tool is being extended to support dynamic aeroservoelastic analysis and structural optimization for advanced aircraft concepts. These required enhancements include: the development of an aerodynamic matching routine for correcting Nastrans doublet-lattice method aerodynamics; the implementation of control surface structural models; and the implementation of support for Nastrans flutter solution sequence (SOL 145). This paper presents an update on the implementation of generalized control surface structural models and support for Nastran SOL 145

    Parameterized Streaming Algorithms for Vertex Cover

    Full text link
    As graphs continue to grow in size, we seek ways to effectively process such data at scale. The model of streaming graph processing, in which a compact summary is maintained as each edge insertion/deletion is observed, is an attractive one. However, few results are known for optimization problems over such dynamic graph streams. In this paper, we introduce a new approach to handling graph streams, by instead seeking solutions for the parameterized versions of these problems where we are given a parameter kk and the objective is to decide whether there is a solution bounded by kk. By combining kernelization techniques with randomized sketch structures, we obtain the first streaming algorithms for the parameterized versions of the Vertex Cover problem. We consider the following three models for a graph stream on nn nodes: 1. The insertion-only model where the edges can only be added. 2. The dynamic model where edges can be both inserted and deleted. 3. The \emph{promised} dynamic model where we are guaranteed that at each timestamp there is a solution of size at most kk. In each of these three models we are able to design parameterized streaming algorithms for the Vertex Cover problem. We are also able to show matching lower bound for the space complexity of our algorithms. (Due to the arXiv limit of 1920 characters for abstract field, please see the abstract in the paper for detailed description of our results)Comment: Fixed some typo

    How to Model Condensate Banking in a Simulation Model to Get Reliable Forecasts? Case Story of Elgin/Franklin

    Get PDF
    Imperial Users onl

    Computationally Efficient Data-Driven MPC for Agile Quadrotor Flight

    Full text link
    This paper develops computationally efficient data-driven model predictive control (MPC) for Agile quadrotor flight. Agile quadrotors in high-speed flights can experience high levels of aerodynamic effects. Modeling these turbulent aerodynamic effects is a cumbersome task and the resulting model may be overly complex and computationally infeasible. Combining Gaussian Process (GP) regression models with a simple dynamic model of the system has demonstrated significant improvements in control performance. However, direct integration of the GP models to the MPC pipeline poses a significant computational burden to the optimization process. Therefore, we present an approach to separate the GP models to the MPC pipeline by computing the model corrections using reference trajectory and the current state measurements prior to the online MPC optimization. This method has been validated in the Gazebo simulation environment and has demonstrated of up to 50%50\% reduction in trajectory tracking error, matching the performance of the direct GP integration method with improved computational efficiency.Comment: 6 pages, accepted in ACC 2023 (American Control Conference, 2023

    Matching Theory for Future Wireless Networks: Fundamentals and Applications

    Full text link
    The emergence of novel wireless networking paradigms such as small cell and cognitive radio networks has forever transformed the way in which wireless systems are operated. In particular, the need for self-organizing solutions to manage the scarce spectral resources has become a prevalent theme in many emerging wireless systems. In this paper, the first comprehensive tutorial on the use of matching theory, a Nobelprize winning framework, for resource management in wireless networks is developed. To cater for the unique features of emerging wireless networks, a novel, wireless-oriented classification of matching theory is proposed. Then, the key solution concepts and algorithmic implementations of this framework are exposed. Then, the developed concepts are applied in three important wireless networking areas in order to demonstrate the usefulness of this analytical tool. Results show how matching theory can effectively improve the performance of resource allocation in all three applications discussed

    Velocity estimation via registration-guided least-squares inversion

    Get PDF
    This paper introduces an iterative scheme for acoustic model inversion where the notion of proximity of two traces is not the usual least-squares distance, but instead involves registration as in image processing. Observed data are matched to predicted waveforms via piecewise-polynomial warpings, obtained by solving a nonconvex optimization problem in a multiscale fashion from low to high frequencies. This multiscale process requires defining low-frequency augmented signals in order to seed the frequency sweep at zero frequency. Custom adjoint sources are then defined from the warped waveforms. The proposed velocity updates are obtained as the migration of these adjoint sources, and cannot be interpreted as the negative gradient of any given objective function. The new method, referred to as RGLS, is successfully applied to a few scenarios of model velocity estimation in the transmission setting. We show that the new method can converge to the correct model in situations where conventional least-squares inversion suffers from cycle-skipping and converges to a spurious model.Comment: 20 pages, 13 figures, 1 tabl
    corecore