986 research outputs found

    Cost Adaptation for Robust Decentralized Swarm Behaviour

    Full text link
    Decentralized receding horizon control (D-RHC) provides a mechanism for coordination in multi-agent settings without a centralized command center. However, combining a set of different goals, costs, and constraints to form an efficient optimization objective for D-RHC can be difficult. To allay this problem, we use a meta-learning process -- cost adaptation -- which generates the optimization objective for D-RHC to solve based on a set of human-generated priors (cost and constraint functions) and an auxiliary heuristic. We use this adaptive D-RHC method for control of mesh-networked swarm agents. This formulation allows a wide range of tasks to be encoded and can account for network delays, heterogeneous capabilities, and increasingly large swarms through the adaptation mechanism. We leverage the Unity3D game engine to build a simulator capable of introducing artificial networking failures and delays in the swarm. Using the simulator we validate our method on an example coordinated exploration task. We demonstrate that cost adaptation allows for more efficient and safer task completion under varying environment conditions and increasingly large swarm sizes. We release our simulator and code to the community for future work.Comment: Accepted to IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 201

    Multi-UAV network control through dynamic task allocation: Ensuring data-rate and bit-error-rate support

    Get PDF
    A multi-UAV system relies on communications to operate. Failure to communicate remotely sensed mission data to the base may render the system ineffective, and the inability to exchange command and control messages can lead to system failures. This paper describes a unique method to control communications through distributed task allocation to engage under-utilized UAVs to serve as communication relays and to ensure that the network supports mission tasks. The distributed algorithm uses task assignment information, including task location and proposed execution time, to predict the network topology and plan support using relays. By explicitly coupling task assignment and relay creation processes the team is able to optimize the use of agents to address the needs of dynamic complex missions. The framework is designed to consider realistic network communication dynamics including path loss, stochastic fading, and information routing. The planning strategy is shown to ensure that agents support both datarate and interconnectivity bit-error-rate requirements during task execution. System performance is characterized through experiments both in simulation and in outdoor flight testing with a team of three UAVs.Aurora Flight Sciences Corp. (Fellowship Program

    BEHAVIORAL COMPOSITION FOR HETEROGENEOUS SWARMS

    Get PDF
    Research into swarm robotics has produced a robust library of swarm behaviors that excel at defined tasks such as flocking and area search, many of which have potential for application to a wide range of military problems. However, to be successfully applied to an operational environment, swarms must be flexible enough to achieve a wide array of specific objectives and usable enough to be configured and employed by lay operators. This research explored the use of the Mission-based Architecture for Swarm Composability (MASC) to develop mission-specific tactics as compositions of more general, reusable plays for use with the Advanced Robotic Systems Engineering Laboratory (ARSENL) swarm system. Three tactics were developed to conduct autonomous search of a geographic area and investigation of generated contacts of interest. The tactics were tested in live-flight and virtual environment experiments and compared to a preexisting monolithic behavior implementation completing the same task. Measures of performance were defined and observed that verified the effectiveness of solutions and confirmed the advantages that composition provides with respect to reusability and rapid development of increasingly complex behaviors.Lieutenant Commander, United States NavyApproved for public release. Distribution is unlimited

    Auction-based Task Allocation for Safe and Energy Efficient UAS Parcel Transportation

    Get PDF
    In this paper, two greedy auction-based algorithms are proposed for the allocation of heterogeneous tasks to a heterogeneous fleet of UAVs. The tasks set is composed of parcel delivery tasks and charge tasks, the latter to guarantee service persistency. An optimization problem is solved by each agent to determine its bid for each task. When considering delivery tasks, the bidder aims at minimizing the energy consumption, while the minimization of the flight time is adopted for charge tasks bids. The algorithms include a path planner that computes the minimum risk path for each task-UAV bid exploiting a 2D risk map of the operational area, defined in an urban environment. Each solution approach is implemented by means of two auction strategies: single-item and multiple-item. Considerations about complexity and efficiency of the algorithms are drawn from Monte Carlo simulations

    A Survey on Aerial Swarm Robotics

    Get PDF
    The use of aerial swarms to solve real-world problems has been increasing steadily, accompanied by falling prices and improving performance of communication, sensing, and processing hardware. The commoditization of hardware has reduced unit costs, thereby lowering the barriers to entry to the field of aerial swarm robotics. A key enabling technology for swarms is the family of algorithms that allow the individual members of the swarm to communicate and allocate tasks amongst themselves, plan their trajectories, and coordinate their flight in such a way that the overall objectives of the swarm are achieved efficiently. These algorithms, often organized in a hierarchical fashion, endow the swarm with autonomy at every level, and the role of a human operator can be reduced, in principle, to interactions at a higher level without direct intervention. This technology depends on the clever and innovative application of theoretical tools from control and estimation. This paper reviews the state of the art of these theoretical tools, specifically focusing on how they have been developed for, and applied to, aerial swarms. Aerial swarms differ from swarms of ground-based vehicles in two respects: they operate in a three-dimensional space and the dynamics of individual vehicles adds an extra layer of complexity. We review dynamic modeling and conditions for stability and controllability that are essential in order to achieve cooperative flight and distributed sensing. The main sections of this paper focus on major results covering trajectory generation, task allocation, adversarial control, distributed sensing, monitoring, and mapping. Wherever possible, we indicate how the physics and subsystem technologies of aerial robots are brought to bear on these individual areas

    ๋ฌด์ธ๊ธฐ ๊ณต๊ฒฉํŽธ๋Œ€๊ตฐ ์šด์šฉ์„ ์œ„ํ•œ CBBA ๊ธฐ๋ฐ˜ ๋ถ„์‚ฐํ˜• ์ž„๋ฌดํ• ๋‹น

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ํ•ญ๊ณต์šฐ์ฃผ๊ณตํ•™๊ณผ, 2021. 2. ๊น€์œ ๋‹จ.In this thesis, a distributed task assignment algorithm is proposed for the air strike package mission of heterogeneous unmanned areal vehicles(UAVs) based on the consensus-based bundle algorithm(CBBA). Air Strike Package mission can be modeled as a task assignment problem that multiple UAVs perform various actions by their respective roles. The UAVs participating in the operation consist of strike force for the destruction of enemys ground targets, SEAD(Suppression of Enemy Air Defense) for the neutralization of enemy's air defense system, and counter-air for the protection of UAV from the enemys air-to-air threat. In this study, a distributed task assignment algorithm considering path-planning in presence of SAM(Surface-to-Air Missile) and terrain obstacle is proposed, which is applied to complex air strike package mission based on the characteristics of the ground target and various operational functions of the UAVs. Numerical simulations are performed to demonstrate the effectiveness and applicability of the proposed method.๊ตญ๋‚ดใ†์™ธ์—์„œ ๋‹ค์–‘ํ•œ ์ž„๋ฌดํ• ๋‹น ์—ฐ๊ตฌ๊ฐ€ ์ง„ํ–‰ ์ค‘์ด๋‚˜ ์‹ค์ œ ๊ณต์ค‘์ž‘์ „์— ํ•ต์‹ฌ์ „๋ ฅ์ธ ๊ณต๊ฒฉํŽธ๋Œ€๊ตฐ์˜ ์ž‘์ „ํ™˜๊ฒฝ์„ ๊ณ ๋ คํ•œ ์—ฐ๊ตฌ๋Š” ๋งค์šฐ ์ œํ•œ์ ์ด๋‹ค. ๋ฌด์ธ๊ธฐ ๊ธฐ์ˆ ์ด ๊ณ ๋„ํ™”๋˜์–ด ๊ตฐ์‚ฌ์  ์šด์šฉ์ด ํ˜„์‹คํ™”๋œ ์˜ค๋Š˜๋‚ , ์„ธ๊ณ„ ์ตœ๊ณ ์˜ ๊ตฐ์‚ฌ ๊ฐ•๊ตญ์ธ ๋ฏธ๊ตญ์€ 2025 ~ 30๋…„์„ ๋ชฉํ‘œ๋กœ ๋ฌด์ธ๊ธฐ ๊ณต๊ฒฉํŽธ๋Œ€๊ตฐ์„ ๊ฐœ๋ฐœํ•˜ ๋ ค๋Š” ๋…ธ๋ ฅ์„ ๊ฒฝ์ฃผํ•˜๊ณ  ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” CBBA(Consensus Based Bundle Algorithm)์„ ๊ธฐ๋ฐ˜ ์œผ๋กœ ๋ฌด์ธ๊ธฐ ๊ณต๊ฒฉํŽธ๋Œ€๊ตฐ์˜ ์ž„๋ฌด์ˆ˜ํ–‰์„ ์œ„ํ•œ ๋ถ„์‚ฐํ˜• ์ž„๋ฌดํ• ๋‹น ์•Œ๊ณ ๋ฆฌ๋“ฌ์„ ์ œ์‹œํ•œ๋‹ค. ๊ณต๊ฒฉํŽธ๋Œ€๊ตฐ ์ž„๋ฌด๋Š” ์ด์ข…์˜ ๋ฌด์ธ๊ธฐ์— ๊ฐ์ž์˜ ์—ญํ• ์— ๋ถ€ํ•ฉํ•˜๋„ ๋ก ์ž„๋ฌด๋ฅผ ๋ถ€์—ฌํ•˜๋Š” ์ž„๋ฌดํ• ๋‹น ๋ฌธ์ œ๋กœ ์ •์˜ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ž‘์ „์— ์ฐธ๊ฐ€ํ•˜๋Š” ๋ฌด์ธ๊ธฐ๋Š” ์ ์˜ ์ง€์ƒํ‘œ์ ์„ ํƒ€๊ฒฉํ•˜๋Š” Strike์™€ ๋Œ€๊ณต ๋ฐฉ์–ด๋ง์ธ SAM (Surface-to-Air Missile)์„ ํŒŒ๊ดดํ•˜๋Š” SEAD(Suppression of Enemy Air Defense), ๊ทธ๋ฆฌ๊ณ  ์ ๊ธฐ์˜ ๊ณต๋Œ€๊ณต ์œ„ํ˜‘์œผ๋กœ๋ถ€ํ„ฐ ์•„๊ตฐ์„ ๋ณดํ˜ธํ•˜๋Š” Counter-Air ์ „๋ ฅ์œผ๋กœ ๊ตฌ์„ฑ๋œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ตœ๋‹จ๊ฒฝ๋กœ์ƒ์„ฑ ์•Œ๊ณ ๋ฆฌ๋“ฌ ๊ณผ CBBA ์•Œ๊ณ ๋ฆฌ๋“ฌ์„ ์ด์šฉํ•˜์—ฌ SAM ์œ„ํ˜‘๊ณผ ์ง€ํ˜•์žฅ์• ๋ฌผ์ด ์กด์žฌํ•˜๋Š” ์ƒ ํ™ฉ์—์„œ ๊ณต๊ฒฉํ•ด์•ผ ํ•  ์ง€์ƒํ‘œ์ ์˜ ํŠน์„ฑ๊ณผ ์•„๊ตฐ ๋ฌด์ธ๊ธฐ์˜ ๋‹ค์–‘ํ•œ ์ž‘์ „์„ฑ๋Šฅ ์„ ๊ณ ๋ คํ•œ ํ‘œ์ ๊ตฐ ๊ธฐ๋ฐ˜์˜ ๋ถ„์‚ฐํ˜• ์ž„๋ฌดํ• ๋‹น ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ๋˜ํ•œ, ๋‹ค์–‘ ํ•œ ์œ„ํ˜‘์ด ๋™์‹œ์— ์ ์šฉ๋œ ๋ณตํ•ฉ ์ƒํ™ฉ์—์„œ์˜ ๊ณต๊ฒฉํŽธ๋Œ€๊ตฐ ์ž„๋ฌด์— ์ œ์•ˆํ•œ ์•Œ ๊ณ ๋ฆฌ๋“ฌ์„ ์ ์šฉํ•˜๊ณ , ์ˆ˜์น˜ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•˜์—ฌ ์ ์šฉ๋œ ๊ธฐ๋ฒ•์˜ ์„ฑ๋Šฅ๊ณผ ์šด ์šฉ ๊ฐ€๋Šฅ์„ฑ์— ๋Œ€ํ•ด ๊ฒ€ํ† ํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋ฌด์ธ๊ธฐ๋กœ ๊ตฌ์„ฑ๋œ ๊ณต๊ฒฉํŽธ๋Œ€๊ตฐ์„ ๊ฐ€์ •ํ•˜์—ฌ ๋‹ค์–‘ํ•œ ๋ณตํ•ฉ ํ™˜๊ฒฝ์—์„œ์˜ ์ž„๋ฌด์ˆ˜ํ–‰ ๊ฐ€๋Šฅ์„ฑ์„ ์•Œ๊ณ ๋ฆฌ๋“ฌ์„ ํ†ตํ•ด ๊ฒ€์ฆํ•˜๋Š”๋ฐ ์ค‘์ ์„ ๋‘์—ˆ ๋‹ค. ํ–ฅํ›„ ๋ฌด์ธ๊ธฐ๋ฅผ ํ™œ์šฉํ•œ ๊ตฐ์‚ฌ์ž‘์ „๊ณผ ์‹ค์ œ์ ์ธ ์ „์žฅํ™˜๊ฒฝ์„ ๊ณ ๋ คํ•œ ์—ฐ๊ตฌ ๊ฐ€ ๋”์šฑ ํ™•๋Œ€๋  ๊ฒƒ์ด๋‹ค. ์ด๋Ÿฌํ•œ ์—ฐ๊ตฌ๋“ค์„ ํ†ตํ•ด, ์˜ค๋Š˜๋‚  ๊ตญ์™ธ ๊ธฐ์ˆ ์— ๊ธฐ๋ฐ˜ํ•œ ์ „ํˆฌ๊ธฐ ยท ์ •๋ฐ€๋ฌด์žฅ ์ค‘์‹ฌ์˜ ๊ณต์ค‘์ž‘์ „์ด ๋Œ€ํ•œ๋ฏผ๊ตญ์˜ ๊ณผํ•™๊ธฐ์ˆ ๊ณผ ๋ฌด์ธ๊ธฐ์— ๊ธฐ๋ฐ˜ํ•œ ์ƒˆ๋กœ์šด ๋ฌด๊ธฐ์ฒด๊ณ„ ์ค‘์‹ฌ์œผ๋กœ ์ „ํ™˜ํ•˜๋Š” ๊ณ„๊ธฐ๊ฐ€ ๋  ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค.Table of Contents Abstract ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท i Table of Contents ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท iii List of Tables ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท v List of Figures ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท vi List of Abbreviations ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท vii CHAPTER 1. INTRODUCTION 1 1.1 Background ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 1 1.2 Related Research ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 4 1.3 Contributions ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 6 1.4 Thesis Organization ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 7 CHAPTER 2. Problem Statement 8 2.1 Employment of the Air Strike Package ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 8 2.1.1 ATO cycle ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 9 2.1.2 Limitations of the preplanned air strike package ยทยทยทยทยทยทยทยทยทยทยทยท 10 2.1.3 Real-time applicable UAV air strike package ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 11 2.2 Mission Environment of the Air Strike Package ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 13 2.3 Task Assignment Problem ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 15 2.4 CBBA Method ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 17 2.5 Distributed Task Assignment Algorithm Considering Selective Strike ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 20 CHAPTER 3. Three Staged UAV Air Strike Package Task Assignment Model 3.1 Model of Target Group-Based Air Strike Package in Offline Environments (Stage 1) ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 24 3.1.1 Assumptions ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 24 3.1.2 Target group-based CBBA algorithm ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 26 3.2 Model of Air Strike Package with Additional SEAD and Counter-Air in an Online Environment (Stage 2) ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 27 3.2.1 Assumptions ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 27 3.2.2 Online algorithm for a complete-form of air strike package combination ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 28 3.3 Model of Comprehensive Air Strike Package mission in Complex Threat Situations (Stage 3) ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 31 CHAPTER 4. Numerical Simulation 32 4.1 Battlefield Environment ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 32 4.2 Simulation results ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 35 4.2.1 Stage 1 simulation result ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 35 4.2.2 Stage 2 simulation result ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 38 4.2.3 Stage 3 simulation result ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 41 CHAPTER 5. Conclusions 45 5.1 Concluding Remarks ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 45 5.2 Future Work ยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยทยท 46 Reference 48 ๊ตญ๋ฌธ์ดˆ๋ก 52 ๊ฐ์‚ฌ์˜ ๊ธ€ 54Maste

    Solar-powered aquaponics prototype as sustainable approach for food production

    Get PDF
    This paper presents the establishment of a solar-powered aquaponics prototype as a sustainable, cost effective and environmentally sound approach for food production. In this study, a prototype bench top aquaponics rig with an integrated 20 W solar panel were fabricated for the cultivation of red Hybrid Tilapia (Oreochromis spp.) and leaf mustard (Brassica juncea). The size of the fish tank is about 29.5L and serves as the base for the setup. Additionally, the hydroponic grower compartment (0.45 m (L) ๏ฟฝ 0.32 m (W) ๏ฟฝ 0.13 m (H)) was stacked on top of the fish tank and was filled with LECA media bed for the plant growth. Two important operating parameters were studied. First, the amount of energy produced by the solar panel and the energy consumption by the water pump used in the setup. Secondly, the resultant effects from fish cultivation and plants growth on the water qualities and nitrification effi๏ฟฝciency of the aquaponics unit. The aquaponics unit was operated for a month and the values of pH, tem๏ฟฝperature, and ammonia level were measured to be within the range of 6.4โ€“7.2, 27.1โ€“31.7 ๏ฟฝC, and 1 mg๏ฟฝL๏ฟฝ1 , respectively. Survival rate for fish was about 75% with specific growth rate (SGR) of 3.75% per day and food conversion ratio of about 1.15. A slight nutrient deficiency was evident and plants showed a healthy growth with height gain as high as 5 cm was achieved. Despite raining season, our data shows that the energy produced via 20 W solar panel enabled the unit to run at night without depending on local electricity for nearly two hours. Clearly, a larger solar panel is needed for longer operation. Nevertheless, the study has proven the potential of operating a low cost aquaponics setup using renew๏ฟฝable energy for a sustainable food production method
    • โ€ฆ
    corecore