1,200 research outputs found

    Underwater Vehicles

    Get PDF
    For the latest twenty to thirty years, a significant number of AUVs has been created for the solving of wide spectrum of scientific and applied tasks of ocean development and research. For the short time period the AUVs have shown the efficiency at performance of complex search and inspection works and opened a number of new important applications. Initially the information about AUVs had mainly review-advertising character but now more attention is paid to practical achievements, problems and systems technologies. AUVs are losing their prototype status and have become a fully operational, reliable and effective tool and modern multi-purpose AUVs represent the new class of underwater robotic objects with inherent tasks and practical applications, particular features of technology, systems structure and functional properties

    Subsea inspection and monitoring challenges

    Get PDF
    Master's thesis in Offshore technology : industrial asset managementThis paper uncovers and suggests solutions for the challenges to control change over time more reliable and cost effective. Front-end concept engineering, design, inspection and monitoring strategies, technologies, systems and methods for Life-of-Field are recommended. Autonomous underwater vehicles (AUV) are identified as a possible cost- efficient opportunity to reduce cost of inspections and monitoring operations while safeguarding asset integrity. A recognized design spiral methodology is used to perform a front-end concept evaluation of an AUV system. Investigation of key technological limitations and new developments within underwater communication, energy storage and wireless power transmission is performed. It further enables opportunities such as AUV recharging station on the seafloor for better utilization. One major learning point is through the use of numerical models and the outcome being a better and more hydro effective hull design. One expectation from this paper may be the aid to collaborating partners in their design work

    Persistence Through Collaboration at Sea for Off-Shore and Coastal Operations

    Get PDF
    Collaboration (Bruzzone et al. 2013a, b, c, d, e, f) is often mentioned as an opportunity to develop new capabilities for autonomous systems; indeed this paper proposes a practical application where use this approach to enhance the autonomy of the systems during operations in coastal areas or around offshore platforms. The proposed case deals with developing a collaborative approach (Bruzzone et al. 2013a, b, c, d, e, f) among an USV (Unmanned Surface Vehicle) with several AUV (Autonomous Underwater Vehicles) to guarantee persistent surveillance over a marine area (Shkurti et al. 2012). Obviously, the proposed solution could be adopted also for defense and homeland security (Bruzzone et al. 2011a, b, 2010) as well as for archeological site protection in consistence with related cost analysis. The authors propose a technological solution as well as a simulation framework to validate and demonstrate the capabilities of this new approach as well as to quantify expected improvements

    Design of a modular Autonomous Underwater Vehicle for archaeological investigations

    Get PDF
    MARTA (MARine Tool for Archaeology) is a modular AUV (Autonomous Underwater Vehicle) designed and developed by the University of Florence in the framework of the ARROWS (ARchaeological RObot systems for the World's Seas) FP7 European project. The ARROWS project challenge is to provide the underwater archaeologists with technological tools for cost affordable campaigns: i.e. ARROWS adapts and develops low cost AUV technologies to significantly reduce the cost of archaeological operations, covering the full extent of an archaeological campaign (underwater mapping, diagnosis and cleaning tasks). The tools and methodologies developed within ARROWS comply with the "Annex" of the 2001 UNESCO Convention for the protection of Underwater Cultural Heritage (UCH). The system effectiveness and MARTA performance will be demonstrated in two scenarios, different as regards the environment and the historical context, the Mediterranean Sea (Egadi Islands) and the Baltic Sea

    Guidance and control of an autonomous underwater vehicle

    Get PDF
    Merged with duplicate record 10026.1/856 on 07.03.2017 by CS (TIS)A cooperative project between the Universities of Plymouth and Cranfield was aimed at designing and developing an autonomous underwater vehicle named Hammerhead. The work presented herein is to formulate an advance guidance and control system and to implement it in the Hammerhead. This involves the description of Hammerhead hardware from a control system perspective. In addition to the control system, an intelligent navigation scheme and a state of the art vision system is also developed. However, the development of these submodules is out of the scope of this thesis. To model an underwater vehicle, the traditional way is to acquire painstaking mathematical models based on laws of physics and then simplify and linearise the models to some operating point. One of the principal novelties of this research is the use of system identification techniques on actual vehicle data obtained from full scale in water experiments. Two new guidance mechanisms have also been formulated for cruising type vehicles. The first is a modification of the proportional navigation guidance for missiles whilst the other is a hybrid law which is a combination of several guidance strategies employed during different phases of the Right. In addition to the modelling process and guidance systems, a number of robust control methodologies have been conceived for Hammerhead. A discrete time linear quadratic Gaussian with loop transfer recovery based autopilot is formulated and integrated with the conventional and more advance guidance laws proposed. A model predictive controller (MPC) has also been devised which is constructed using artificial intelligence techniques such as genetic algorithms (GA) and fuzzy logic. A GA is employed as an online optimization routine whilst fuzzy logic has been exploited as an objective function in an MPC framework. The GA-MPC autopilot has been implemented in Hammerhead in real time and results demonstrate excellent robustness despite the presence of disturbances and ever present modelling uncertainty. To the author's knowledge, this is the first successful application of a GA in real time optimization for controller tuning in the marine sector and thus the thesis makes an extremely novel and useful contribution to control system design in general. The controllers are also integrated with the proposed guidance laws and is also considered to be an invaluable contribution to knowledge. Moreover, the autopilots are used in conjunction with a vision based altitude information sensor and simulation results demonstrate the efficacy of the controllers to cope with uncertain altitude demands.J&S MARINE LTD., QINETIQ, SUBSEA 7 AND SOUTH WEST WATER PL

    Optimal control of the heave motion of marine cable subsea-unit systems

    Get PDF
    One of the key problems associated with subsea operations involving tethered subsea units is the motions of support vessels on the ocean surface which can be transmitted to the subsea unit through the cable and increase the tension. In this paper, a theoretical approach for heave compensation is developed. After proper modelling of each element of the system, which includes the cable/subsea-unit, the onboard winch, control theory is applied to design an optimal control law. Numerical simulations are carried out, and it is found that the proposed active control scheme appears to be a promising solution to the problem of heave compensation

    Optimal control of systems with memory

    Get PDF
    The “Optimal Control of Systems with memory” is a PhD project that is borne from the collaboration between the Department of Mechanical and Aerospace Engineering of Sapienza University of Rome and CNR-INM the Institute for Marine Engineering of the National Research Council of Italy (ex INSEAN). This project is part of a larger EDA (European Defence Agency) project called ETLAT: Evaluation of State of the Art Thin Line Array Technology. ETLAT is aimed at improving the scientific and technical knowledge of potential performance of current Thin Line Towed Array (TLA) technologies (element sensors and arrays) in view of Underwater Surveillance applications. A towed sonar array has been widely employed as an important tool for naval defence, ocean exploitation and ocean research. Two main operative limitations costrain the TLA design such as: a fixed immersion depth and the stabilization of its horizontal trim. The system is composed by a towed vehicle and a towed line sonar array (TLA). The two subsystems are towed by a towing cable attached to the moving boat. The role of the vehicle is to guarantee a TLA’s constant depth of navigation and the reduction of the entire system oscillations. The vehicle is also called "depressor" and its motion generates memory effects that influence the proper operation of the TLA. The dynamic of underwater towed system is affected by memory effects induced by the fluid-structure interaction, namely: vortex shedding and added damping due to the presence of a free surface in the fluid. In time domain, memory effects are represented by convolution integral between special kernel functions and the state of the system. The mathematical formulation of the underwater system, implies the use of integral-differential equations in the time domain, that requires a nonstandard optimal control strategy. The goal of this PhD work is to developed a new optimal control strategy for mechanical systems affected by memory effects and described by integral-differential equations. The innovative control method presented in this thesis, is an extension of the Pontryagin optimal solution which is normally applied to differential equations. The control is based on the variational control theory implying a feedback formulation, via model predictive control. This work introduces a novel formulation for the control of the vehicle and cable oscillations that can include in the optimal control integral terms besides the more conventional differential ones. The innovative method produces very interesting results, that show how even widely applied control methods (LQR) fail, while the present formulation exhibits the advantage of the optimal control theory based on integral-differential equations of motion

    The Hierarchic treatment of marine ecological information from spatial networks of benthic platforms

    Get PDF
    Measuring biodiversity simultaneously in different locations, at different temporal scales, and over wide spatial scales is of strategic importance for the improvement of our understanding of the functioning of marine ecosystems and for the conservation of their biodiversity. Monitoring networks of cabled observatories, along with other docked autonomous systems (e.g., Remotely Operated Vehicles [ROVs], Autonomous Underwater Vehicles [AUVs], and crawlers), are being conceived and established at a spatial scale capable of tracking energy fluxes across benthic and pelagic compartments, as well as across geographic ecotones. At the same time, optoacoustic imaging is sustaining an unprecedented expansion in marine ecological monitoring, enabling the acquisition of new biological and environmental data at an appropriate spatiotemporal scale. At this stage, one of the main problems for an effective application of these technologies is the processing, storage, and treatment of the acquired complex ecological information. Here, we provide a conceptual overview on the technological developments in the multiparametric generation, storage, and automated hierarchic treatment of biological and environmental information required to capture the spatiotemporal complexity of a marine ecosystem. In doing so, we present a pipeline of ecological data acquisition and processing in different steps and prone to automation. We also give an example of population biomass, community richness and biodiversity data computation (as indicators for ecosystem functionality) with an Internet Operated Vehicle (a mobile crawler). Finally, we discuss the software requirements for that automated data processing at the level of cyber-infrastructures with sensor calibration and control, data banking, and ingestion into large data portals.Peer ReviewedPostprint (published version
    corecore