78,921 research outputs found

    Enhancing the EAST-ADL error model with HiP-HOPS semantics

    Get PDF
    EAST-ADL is a domain-specific modelling language for the engineering of automotive embedded systems. The language has abstractions that enable engineers to capture a variety of information about design in the course of the lifecycle — from requirements to detailed design of hardware and software architectures. The specification of the EAST-ADL language includes an error model extension which documents language structures that allow potential failures of design elements to be specified locally. The effects of these failures are then later assessed in the context of the architecture design. To provide this type of useful assessment, a language and a specification are not enough; a compiler-like tool that can read and operate on a system specification together with its error model is needed. In this paper we integrate the error model of EAST-ADL with the precise semantics of HiP-HOPS — a state-of-the-art tool that enables dependability analysis and optimization of design models. We present the integration concept between EAST-ADL structure and HiP-HOPS error propagation logic and its transformation into the HiP-HOPS model. Source and destination models are represented using the corresponding XML formats. The connection of these two models at tool level enables practical EAST-ADL designs of embedded automotive systems to be analysed in terms of dependability, i.e. safety, reliability and availability. In addition, the information encoded in the error model can be re-used across different contexts of application with the associated benefits for cost reduction, simplification, and rationalisation of dependability assessments in complex engineering designs

    AADLib, A Library of Reusable AADL Models

    Get PDF
    The SAE Architecture Analysis and Design Language is now a well-established language for the description of critical embedded systems, but also cyber-physical ones. A wide range of analysis tools is already available, either as part of the OSATE tool chain, or separate ones. A key missing elements of AADL is a set of reusable building blocks to help learning AADL concepts, but also experiment already existing tool chains on validated real-life examples. In this paper, we present AADLib, a library of reusable model elements. AADLib is build on two pillars: 1/ a set of ready-to- use examples so that practitioners can learn more about the AADL language itself, but also experiment with existing tools. Each example comes with a full description of available analysis and expected results. This helps reducing the learning curve of the language. 2/ a set of reusable model elements that cover typical building blocks of critical systems: processors, networks, devices with a high level of fidelity so that the cost to start a new project is reduced. AADLib is distributed under a Free/Open Source License to further disseminate the AADL language. As such, AADLib provides a convenient way to discover AADL concepts and tool chains, and learn about its features

    A MDE-based optimisation process for Real-Time systems

    Get PDF
    The design and implementation of Real-Time Embedded Systems is now heavily relying on Model-Driven Engineering (MDE) as a central place to define and then analyze or implement a system. MDE toolchains are taking a key role as to gather most of functional and not functional properties in a central framework, and then exploit this information. Such toolchain is based on both 1) a modeling notation, and 2) companion tools to transform or analyse models. In this paper, we present a MDE-based process for system optimisation based on an architectural description. We first define a generic evaluation pipeline, define a library of elementary transformations and then shows how to use it through Domain-Specific Language to evaluate and then transform models. We illustrate this process on an AADL case study modeling a Generic Avionics Platform

    Model-based dependability analysis : state-of-the-art, challenges and future outlook

    Get PDF
    Abstract: Over the past two decades, the study of model-based dependability analysis has gathered significant research interest. Different approaches have been developed to automate and address various limitations of classical dependability techniques to contend with the increasing complexity and challenges of modern safety-critical system. Two leading paradigms have emerged, one which constructs predictive system failure models from component failure models compositionally using the topology of the system. The other utilizes design models - typically state automata - to explore system behaviour through fault injection. This paper reviews a number of prominent techniques under these two paradigms, and provides an insight into their working mechanism, applicability, strengths and challenges, as well as recent developments within these fields. We also discuss the emerging trends on integrated approaches and advanced analysis capabilities. Lastly, we outline the future outlook for model-based dependability analysis

    Context-aware adaptation in DySCAS

    Get PDF
    DySCAS is a dynamically self-configuring middleware for automotive control systems. The addition of autonomic, context-aware dynamic configuration to automotive control systems brings a potential for a wide range of benefits in terms of robustness, flexibility, upgrading etc. However, the automotive systems represent a particularly challenging domain for the deployment of autonomics concepts, having a combination of real-time performance constraints, severe resource limitations, safety-critical aspects and cost pressures. For these reasons current systems are statically configured. This paper describes the dynamic run-time configuration aspects of DySCAS and focuses on the extent to which context-aware adaptation has been achieved in DySCAS, and the ways in which the various design and implementation challenges are met

    Critical Cooperation Range to Improve Spatial Network Robustness

    Full text link
    A robust worldwide air-transportation network (WAN) is one that minimizes the number of stranded passengers under a sequence of airport closures. Building on top of this realistic example, here we address how spatial network robustness can profit from cooperation between local actors. We swap a series of links within a certain distance, a cooperation range, while following typical constraints of spatially embedded networks. We find that the network robustness is only improved above a critical cooperation range. Such improvement can be described in the framework of a continuum transition, where the critical exponents depend on the spatial correlation of connected nodes. For the WAN we show that, except for Australia, all continental networks fall into the same universality class. Practical implications of this result are also discussed
    corecore