2 research outputs found

    Modelling and analysis of conversion efficiency in flow-through catalysts for lean-burn combustion engines

    Full text link
    [ES] La preocupaci贸n mundial por el cambio clim谩tico y la calidad del aire se refleja en normativas para la regulaci贸n de emisiones en el sector del transporte cada vez m谩s estrictas, situando el desarrollo de sistemas propulsivos sostenibles como el objetivo fundamental. En el caso de los motores de combusti贸n interna, el uso de sistemas de postratamiento de gases de escape, necesario para cumplir con los l铆mites impuestos a las emisiones contaminantes, ha a帽adido mayor complejidad a la l铆nea de escape. Una correcta comprensi贸n de la respuesta de estos sistemas y su interacci贸n con el motor requiere un profundo conocimiento de los procesos termo-fluidodin谩micos y qu铆micos que tienen lugar en los mismos. Su estudio indica que las mayores contribuciones a la reducci贸n de las emisiones consisten en conseguir una activaci贸n m谩s r谩pida de los catalizadores. Sin embargo, por lo general, las estrategias empleadas para alcanzar este fin se traducen en una penalizaci贸n del consumo de combustible y, por consiguiente, de las emisiones de CO2. En este contexto, el objetivo de esta tesis doctoral es contribuir a la comprensi贸n de los fen贸menos presentes en los reactores monol铆ticos de flujo continuo utilizados en los motores de combusti贸n pobre. En primer lugar, se presenta el desarrollo de una herramienta computacional para el modelado de los reactores est谩ndar, es decir, los monolitos con recubrimiento catal铆tico monocapa, con un coste computacional bajo que permite responder de manera oportuna a las nuevas condiciones de contorno. El modelo se construy贸 dentro del entorno de modelo de motor virtual VEMOD, un software de din谩mica de gases desarrollado por el I.U.I. CMT-Motores T茅rmicos para la simulaci贸n termo-fluidodin谩mica de motores de combusti贸n interna y sus componentes. Apoyada sobre experimentos espec铆ficos para su calibraci贸n y validaci贸n en catalizadores de oxidaci贸n y de reducci贸n de NOx, la herramienta computacional permite la identificaci贸n y el estudio de los par谩metros que determinan la eficiencia de conversi贸n de los sistemas de postratamiento. De esta forma, se aplica, con un enfoque de c谩lculo de valor medio, al an谩lisis, en primer lugar, del impacto de la meso-geometr铆a y el material de catalizadores de oxidaci贸n en condiciones din谩micas en funci贸n de la forma del canal. Tambi茅n se aborda el estudio de la sensibilidad a la composici贸n de los gases de escape considerando diversas estrategias de combusti贸n comparadas con el di茅sel convencional, as铆 como el empleo de combustibles alternativos. Por 煤ltimo, se explora experimentalmente la importancia de la ubicaci贸n en la l铆nea de escape de un catalizador de oxidaci贸n para discutir el efecto sobre las emisiones y el rendimiento del motor de la ubicaci贸n pre-turbina, por los beneficios que a nivel t茅rmico tiene esta localizaci贸n para el postratamiento. Todo ello sirve como fuente de desarrollos tecnol贸gicos y cient铆ficos en el 谩rea de control de emisiones para el uso y comprensi贸n de la nueva generaci贸n de sistemas de postratamiento.[CA] La preocupaci贸 mundial pel canvi clim脿tic i la qualitat de l'aire es reflecteix en normatives per a la regulaci贸 d'emissions en el sector del transport cada vegada m茅s estrictes, situant el desenvolupament de sistemes propulsius sostenibles com l'objectiu fonamental. En el cas dels motors de combusti贸 interna, l'煤s de sistemes de posttractament de gasos de fuita, necessari per a complir amb els l铆mits imposats a les emissions contaminants, ha afegit major complexitat a la l铆nia de fuita. Una correcta comprensi贸 de la resposta d'aquests sistemes i la seua interacci贸 amb el motor requereix un profund coneixement dels processos termo-fluidodin谩micos i qu铆mics que tenen lloc en aquests. El seu estudi indica que les majors contribucions a la reducci贸 de les emissions consisteix a aconseguir una activaci贸 m茅s r脿pida dels catalitzadors. No obstant aix貌, en general, les estrat猫gies emprades per a aconseguir aquest objectiu es tradueixen en una penalitzaci贸 del consum de combustible i, per conseg眉ent, de les emissions de CO2. En aquest context, l'objectiu d'aquesta tesi doctoral 茅s contribuir a la comprensi贸 dels fen貌mens presents en els reactors monol铆tics de flux continu utilitzats en els motors de combusti贸 pobra. En primer lloc, es presenta el desenvolupament d'una eina computacional per al modelatge dels reactors est脿ndard, 茅s a dir, els mon貌lits amb recobriment catal铆tic monocapa, amb un cost computacional baix que permet respondre de manera oportuna a les noves condicions de contorn. El model es va construir dins de l'entorn de model de motor virtual VEMOD, un programari de din脿mica de gasos desenvolupat per l'I.U.I. CMT-Motors T猫rmics per a la simulaci贸 termo-fluidodin谩mica de motors de combusti贸 interna i els seus components. Recolzada sobre experiments espec铆fics per al seu calibratge i validaci贸 en catalitzadors d'oxidaci贸 i de reducci贸 de NOx, l'eina computacional permet la identificaci贸 l'estudi dels par脿metres que determinen l'efici猫ncia de conversi贸 dels sistemes de posttractament. D'aquesta manera, s'aplica, amb un enfocament de c脿lcul de valor mitj脿, a l'an脿lisi, en primer lloc, de l'impacte de la meso-geometria i el material de catalitzadors d'oxidaci贸 en condicions din脿miques en funci贸 de la forma del canal. Tamb茅 s'aborda l'estudi de la sensibilitat a la composici贸 dels gasos de fuita considerant diverses estrat猫gies de combusti贸 comparades amb el di猫sel convencional, aix铆 com l'煤s de combustibles alternatius. Finalment, s'explora experimentalment la import脿ncia de la ubicaci贸 en la l铆nia de fuita d'un catalitzador d'oxidaci贸 per a discutir l'efecte sobre les emissions i el rendiment del motor de la ubicaci贸 pre-turbina, pels beneficis que a nivell t猫rmic t茅 aquesta localitzaci贸 per al posttractament. Tot aix貌 serveix com a font de desenvolupaments tecnol貌gics i cient铆fics en l'脿rea de control d'emissions per a l'煤s i comprensi贸 de la nova generaci贸 de sistemes de posttractament.[EN] The global concern on climate change and air quality is reflected over increasingly strict emission regulations in the transportation sector, making the development of sustainable propulsion systems the key objective. In the case of internal combustion engines, the use of aftertreatment systems (ATS), necessary to comply with the limits imposed on pollutant emissions, has added further complexity to the exhaust line. A correct comprehension of the response of these systems and their interaction with the engine requires an in-depth knowledge of the thermo-fluid-dynamic and chemical processes taking place inside them. Their study indicates that the major contributions to emission reduction rely on driving the catalysts to a faster light-off. However, in general, the strategies employed to achieve this goal involve a fuel consumption penalty and, consequently, CO2 emissions increase. In this context, the aim of this Ph.D. thesis is to contribute to the understanding of the phenomena present in flow-through catalysts used in lean burn combustion engines. First, the development of a computational tool for modelling the standard devices, i.e. mono-layers washcoat catalysts, is presented, with flexible and low computational cost, enabling timely response to the new boundary conditions. The model was built inside the Virtual Engine Model VEMOD, an open-source gas dynamics software developed by I.U.I. CMT-Motores T茅rmicos for thermo-fluid-dynamic simulation of internal combustion engines and their components. Supported by specific experiments for its calibration and validation on oxidation and NOx reduction catalysts, the computational tool allows the identification and study of the parameters that determine the conversion efficiency of the ATS. In the first instance it is used to analyze the impact of meso-geometry and oxidation catalyst material under dynamic conditions as a function of the channel shape. The study of the sensitivity to exhaust gas composition is also addressed considering various combustion strategies compared to conventional diesel, as well as the use of alternative fuels. Finally, the importance of the position in the exhaust line of an oxidation catalyst is explored experimentally to discuss the effect on emissions and engine performance of the pre-turbine location, because of the thermal benefits of this location for the aftertreatment. All of this serves as a source of technological and scientific developments in the area of emissions control for the use and comprehension of the new generation of aftertreatment systems.Ruiz Lucas, MJ. (2023). Modelling and analysis of conversion efficiency in flow-through catalysts for lean-burn combustion engines [Tesis doctoral]. Universitat Polit猫cnica de Val猫ncia. https://doi.org/10.4995/Thesis/10251/19401

    Real-world variability, modelling and mitigation of road transport emissions

    Get PDF
    Outdoor air pollution is considered the largest single environmental health risk and is estimated to cause 4.2 million deaths every year. Despite the major vehicle emissions reduction achieved over the past two decades, road transport remains a major source of air pollutants such as nitrogen oxides (NOx), contributing 39% of the total EU-28 NOx emissions in 2017. The regular exceedances of the annual mean concentration limit for NO2, particularly in urban areas, have been largely attributed to the discrepancies between type approval limits and real-world driving emissions as well as the tting of defeat devices on diesel vehicles. In order to design e ective air quality mitigation strategies, it is therefore crucial to improve our understanding of and ability to model real-world driving emissions. Based on the largest recorded Portable Emissions Measurement System (PEMS) dataset, which comprised 287 Euro 5 and Euro 6 diesel and petrol vehicles, this PhD thesis aims to ll these gaps by providing new emissions models based on an extensive dataset. It is demonstrated in this thesis that while physical parameters such as vehicle weight or engine size did not show any correlation with real-world NOx emissions, external parameters, particularly driving dynamicity, are directly correlated with real-world driving emissions. The e ect of driving dynamicity on real-world emissions is shown to decrease with the successive regulations (Euro standard), indicating a general improvement of aftertreatment systems. The rst model presented is an aggregated emission model, while the second emission model is an instantaneous emission model but both directly account for driving dynamicity, although the way they do di er signi cantly. Both models are reliable and accurate, presenting relative error in prediction smaller than 20%. Additionally, this PhD thesis also intends to gain insights on the real-world impact of an air quality mitigation strategy on the emissions and local air quality. Application of the developed models to the assessment of the impact of a tra c intervention on air quality demonstrated that although the chosen mitigation strategy had locally a measurable impact on emissions and air quality, this impact was small compared to the variations in pollutant concentrations induced by the meteorological conditions. The ease of use of both models, as well as their wide range of applicability make them ideal operational tools for policy makers aiming to build emission inventories or evaluate emissions mitigation strategies.Open Acces
    corecore