2,542 research outputs found

    Modulation Classification for MIMO-OFDM Signals via Approximate Bayesian Inference

    Full text link
    The problem of modulation classification for a multiple-antenna (MIMO) system employing orthogonal frequency division multiplexing (OFDM) is investigated under the assumption of unknown frequency-selective fading channels and signal-to-noise ratio (SNR). The classification problem is formulated as a Bayesian inference task, and solutions are proposed based on Gibbs sampling and mean field variational inference. The proposed methods rely on a selection of the prior distributions that adopts a latent Dirichlet model for the modulation type and on the Bayesian network formalism. The Gibbs sampling method converges to the optimal Bayesian solution and, using numerical results, its accuracy is seen to improve for small sample sizes when switching to the mean field variational inference technique after a number of iterations. The speed of convergence is shown to improve via annealing and random restarts. While most of the literature on modulation classification assume that the channels are flat fading, that the number of receive antennas is no less than that of transmit antennas, and that a large number of observed data symbols are available, the proposed methods perform well under more general conditions. Finally, the proposed Bayesian methods are demonstrated to improve over existing non-Bayesian approaches based on independent component analysis and on prior Bayesian methods based on the `superconstellation' method.Comment: To be appear in IEEE Trans. Veh. Technolog

    Proceedings of the 2nd Computer Science Student Workshop: Microsoft Istanbul, Turkey, April 9, 2011

    Get PDF

    Energy-Efficient Spectrum Sensing for Cognitive Radio Enabled Remote State Estimation Over Wireless Channels

    Get PDF
    The performance of remote estimation over wireless channels is strongly affected by sensor data losses due to interference. Although the impact of interference can be alleviated by applying cognitive radio technique which features in spectrum sensing and transmitting data only on clear channels, the introduction of spectrum sensing incurs extra energy expenditure. In this paper, we investigate the problem of energy-efficient spectrum sensing for remotely estimating the state of a general linear dynamic system, and formulate an optimization problem which minimizes the total sensor energy consumption while guaranteeing a desired level of estimation performance. We model the problem as a mixed integer nonlinear program and propose a simulated annealing based optimization algorithm which jointly addresses when to perform sensing, which channels to sense, in what order and how long to scan each channel. Simulation results demonstrate that the proposed algorithm well balances the sensing energy and transmission energy expenditure and can achieve the desired estimation performance
    corecore