936 research outputs found

    Atmospheric remote sensing and radiopropagation: from numerical modeling to spaceborne and terrestrial applications

    Get PDF
    The remote sensing of electromagnetic wave properties is probably the most viable and fascinating way to observe and study physical media, comprising our planet and its atmosphere, at the same time ensuring a proper continuity in the observations. Applications are manifold and the scientific community has been importantly studying and investing on new technologies, which would let us widen our knowledge of what surrounds us. This thesis aims at showing some novel techniques and corresponding applications in the field of the atmospheric remote sensing and radio-propagation, at both microwave and optical wavelengths. The novel Sun-tracking microwave radiometry technique is shown. The antenna noise temperature of a ground-based microwave radiometer is measured by alternately pointing toward-the-Sun and off-the-Sun while tracking it along its diurnal ecliptic. During clear sky the brightness temperature of the Sun disk emission at K and Ka frequency bands and in the under-explored millimeter-wave V and W bands can be estimated by adopting different techniques. Parametric prediction models for retrieving all-weather atmospheric extinction from ground-based microwave radiometers are tested and their accuracy evaluated. Moreover, a characterization of suspended clouds in terms of atmospheric path attenuation is presented, by exploiting a stochastic approach used to model the time evolution of the cloud contribution. A model chain for the prediction of the tropospheric channel for the downlink of interplanetary missions operating above Ku band is proposed. On top of a detailed description of the approach, the chapter presents the validation results and examples of the model-chain online operation. Online operation has already been tested within a feasibility study applied to the BepiColombo mission to Mercury operated by the European Space Agency (ESA) and by exploiting the Hayabusa-2 mission Ka-band data by the Japan Aerospace Exploration Agency (JAXA), thanks to the ESA cross-support service. A preliminary (and successful) validation of the model-chain has been carried out by comparing the simulated signal-to-noise ratio with the one received from Hayabusa-2. At the next ITU World Radiocommunication Conference 2019, Agenda Item 1.13 will address the identification and the possible additional allocation of radio-frequency spectrum to serve the future development of systems supporting the fifth generation of cellular mobile communications (5G). The potential impact of International Mobile Telecommunications (IMT) deployments is shown in terms of received radio frequency interference by ESA’s telecommunication links. Received interference can derive from several radio-propagation mechanisms, which strongly depend on atmospheric conditions, radio frequency, link availability, distance and path topography; at any time a single mechanism, or more than one may be present. Results are shown in terms of required separation distances, i.e. the minimum distance between the earth station and the IMT station ensuring that the protection criteria for the earth station are met

    Microwave remote sensing algorithms for cirrus clouds and precipitation

    Get PDF
    Sponsored by NASA NAG-5-1592S

    Innovative Techniques for the Retrieval of Earth’s Surface and Atmosphere Geophysical Parameters: Spaceborne Infrared/Microwave Combined Analyses

    Get PDF
    With the advent of the first satellites for Earth Observation: Landsat-1 in July 1972 and ERS-1 in May 1991, the discipline of environmental remote sensing has become, over time, increasingly fundamental for the study of phenomena characterizing the planet Earth. The goal of environmental remote sensing is to perform detailed analyses and to monitor the temporal evolution of different physical phenomena, exploiting the mechanisms of interaction between the objects that are present in an observed scene and the electromagnetic radiation detected by sensors, placed at a distance from the scene, operating at different frequencies. The analyzed physical phenomena are those related to climate change, weather forecasts, global ocean circulation, greenhouse gas profiling, earthquakes, volcanic eruptions, soil subsidence, and the effects of rapid urbanization processes. Generally, remote sensing sensors are of two primary types: active and passive. Active sensors use their own source of electromagnetic radiation to illuminate and analyze an area of interest. An active sensor emits radiation in the direction of the area to be investigated and then detects and measures the radiation that is backscattered from the objects contained in that area. Passive sensors, on the other hand, detect natural electromagnetic radiation (e.g., from the Sun in the visible band and the Earth in the infrared and microwave bands) emitted or reflected by the object contained in the observed scene. The scientific community has dedicated many resources to developing techniques to estimate, study and analyze Earth’s geophysical parameters. These techniques differ for active and passive sensors because they depend strictly on the type of the measured physical quantity. In my P.h.D. work, inversion techniques for estimating Earth’s surface and atmosphere geophysical parameters will be addressed, emphasizing methods based on machine learning (ML). In particular, the study of cloud microphysics and the characterization of Earth’s surface changes phenomenon are the critical points of this work

    Technology Needs Assessment of an Atmospheric Observation System for Multidisciplinary Air Quality/Meteorology Missions, Part 2

    Get PDF
    The technology advancements that will be necessary to implement the atmospheric observation systems are considered. Upper and lower atmospheric air quality and meteorological parameters necessary to support the air quality investigations were included. The technology needs were found predominantly in areas related to sensors and measurements of air quality and meteorological measurements

    Retrieval of soil physical properties:Field investigations, microwave remote sensing and data assimilation

    Get PDF

    CIAO: the CNR-IMAA advanced observatory for atmospheric research

    Get PDF
    Long-term observations of aerosol and clouds are of crucial importance to understand the weather climate system. At the Istituto di Metodologie per l'Analisi Ambientale of the Italian National Research Council (CNR-IMAA) an advanced atmospheric observatory, named CIAO, is operative. CIAO (CNR-IMAA Atmospheric Observatory) main scientific objective is the long term measurement for the climatology of aerosol and cloud properties. Its equipment addresses the state-of-the-art for the ground-based remote sensing of aerosol, water vapour and clouds including active and passive sensors, like lidars, ceilometers, radiometers, and a radar. This paper describes the CIAO infrastructure, its scientific activities as well as the observation strategy. The observation strategy is mainly organized in order to provide quality assured measurements for satellite validation and model evaluation and to fully exploit the synergy and integration of the active and passive sensors for the improvement of atmospheric profiling. Data quality is ensured both by the application of protocols and dedicated quality assurance programs mainly related to the projects and networks in which the infrastructure is involved. The paper also introduces examples of observations performed at CIAO and of the synergies and integration algorithms (using Raman lidar and microwave profiler data) developed and implemented at the observatory for the optimization and improvement of water vapour profiling. CIAO database represents an optimal basis to study the synergy between different sensors and to investigate aerosol-clouds interactions, and can give a significant contribution to the validation programs of the incoming new generation satellite missions

    Atmospheric Instrument Systems and Technology in the Goddard Earth Sciences Division

    Get PDF
    Studies of the Earths atmosphere require a comprehensive set of observations that rely on instruments flown on spacecraft, aircraft, and balloons as well as those deployed on the surface. Within NASAs Goddard Space Flight Center (GSFC) Earth Sciences Division-Atmospheres, laboratories and offices maintain an active program of instrument system development and observational studies that provide: 1) information leading to a basic understanding of atmospheric processes and their relationships with the Earths climate system, 2) prototypes for future flight instruments, 3) instruments to serve as calibration references for satellite missions, and 4) instruments for future field validation campaigns that support ongoing space missions. Our scientists participate in all aspects of instrument activity, including component and system design, calibration techniques, retrieval algorithm development, and data processing systems. The Atmospheres Program has well-equipped labs and test equipment to support the development and testing of instrument systems, such as a radiometric calibration and development facility to support the calibration of ultraviolet and visible (UV/VIS), space-borne solar backscatter instruments. This document summarizes the features and characteristics of 46 instrument systems that currently exist or are under development. The report is organized according to active, passive, or in situ remote sensing across the electromagnetic spectrum. Most of the systems are considered operational in that they have demonstrated performance in the field and are capable of being deployed on relatively short notice. Other systems are under study or of low technical readiness level (TRL). The systems described herein are designed mainly for surface or airborne platforms. However, two Cubesat systems also have been developed through collaborative efforts. The Solar Disk Sextant (SDS) is the single balloon-borne instrument. The lidar systems described herein are designed to retrieve clouds, aerosols, methane, water vapor pressure, temperature, and winds. Most of the lasers operate at some wavelength combination of 355, 532, and 1064 nm. The various systems provide high sensitivity measurements based on returns from backscatter or Raman scattering including intensity and polarization. Measurements of the frequency (Doppler) shift of light scattered from various atmospheric constitutes can also be made. Microwave sensors consist of both active (radar) and passive (radiometer) systems. These systems are important for studying processes involving water in various forms. The dielectric properties of water affect microwave brightness temperatures, which are used to retrieve atmospheric parameters such as rainfall rate and other key elements of the hydrological cycle. Atmosphere radar systems operate in the range from 9.6 GHz to 94 GHz and have measurement accuracies from -5 to 1 dBZ; radiometers operate in the 50 GHz to 874 GHz range with accuracies from 0.5 to 1 degree K; conical and cross-track scan modes are used. Our passive optical sensors, consisting of radiometers and spectrometers, collectively operate from the UV into the infrared. These systems measure energy fluxes and atmospheric parameters such as trace gases, aerosols, cloud properties, or altitude profiles of various species. Imager spatial resolution varies from 37 m to 400 m depending on altitude; spectral resolution is as small as 0.5 nm. Many of the airborne systems have been developed to fly on multiple aircraft

    Development of a Ground Based Remote Sensing Approach for Direct Evaluation of Aerosol-Cloud Interaction

    Full text link
    The possible interaction and modification of cloud properties due to aerosols is one of the most poorly understood mechanisms within climate studies, resulting in the most significant uncertainty as regards radiation budgeting. In this study, we explore direct ground based remote sensing methods to assess the Aerosol-Cloud Indirect Effect directly, as space-borne retrievals are not directly suitable for simultaneous aerosol/cloud retrievals. To illustrate some of these difficulties, a statistical assessment of existing multispectral imagers on geostationary (e.g., GOES)/Moderate Resolution Imaging Spectroradiometer (MODIS) satellite retrievals of the Cloud Droplet Effective Radius (Reff) showed significant biases especially at larger solar zenith angles, further motivating the use of ground based remote sensing approaches. In particular, we discuss the potential of using a combined Microwave Radiometer (MWR)—Multi-Filter Rotating Shadowband Radiometer (MFRSR) system for real-time monitoring of Cloud Optical Depth (COD) and Cloud Droplet Effective Radius (Reff), which are combined with aerosol vertical properties from an aerosol lidar. An iterative approach combining the simultaneous observations from MFRSR and MWR are used to retrieve the COD and Reff for thick cloud cases and are extensively validated using the DoE Southern Great Plains (SGP) retrievals as well as regression based parameterized model retrievals. In addition, we account for uncertainties in background aerosol, surface albedo and the combined measurement uncertainties from the MWR and MFRSR in order to provide realistic uncertainty estimates, which is found to be ~10% for the parameter range of interest in Aerosol-Cloud Interactions. Finally, we analyze a particular case of possible aerosol-cloud interaction described in the literature at the SGP site and demonstrate that aerosol properties obtained at the surface can lead to inconclusive results in comparison to lidar-derived aerosol properties near the cloud base

    Retrieval of daytime total columnar water vapour from MODIS measurements over land surfaces

    Get PDF
    A retrieval of total column water vapour (TCWV) from MODIS (Moderate- resolution Imaging Spectroradiometer) measurements is presented. The algorithm is adapted from a retrieval for MERIS (Medium Resolution Imaging Spectrometer) from Lindstrot et al. (2012). It obtains the TCWV for cloud-free scenes above land at spatial resolution of 1 km×1 km and provides uncertainties on a pixel- by-pixel basis. The algorithm has been extended by introducing correction coefficients for the transmittance calculation within the forward operator. With that a wet bias of the MODIS algorithm against ARMMicrowave Radiometer data has been eliminated. An extensive validation against other ground-based measurements (GNSS-water vapour stations, GUAN Radiosondes) on a global scale reveals a bias between −0.8 and −1.6mm and root mean square deviations between 0.9 and 1.9 mm. This is an improvement in comparison to the operational TCWV Level 2 product (bias between −1.9 and −3.2mm and root mean square deviations between 1.9 and 2.7 mm)

    A novel satellite mission concept for upper air water vapour, aerosol and cloud observations using integrated path differential absorption LiDAR limb sounding

    Get PDF
    We propose a new satellite mission to deliver high quality measurements of upper air water vapour. The concept centres around a LiDAR in limb sounding by occultation geometry, designed to operate as a very long path system for differential absorption measurements. We present a preliminary performance analysis with a system sized to send 75 mJ pulses at 25 Hz at four wavelengths close to 935 nm, to up to 5 microsatellites in a counter-rotating orbit, carrying retroreflectors characterized by a reflected beam divergence of roughly twice the emitted laser beam divergence of 15 µrad. This provides water vapour profiles with a vertical sampling of 110 m; preliminary calculations suggest that the system could detect concentrations of less than 5 ppm. A secondary payload of a fairly conventional medium resolution multispectral radiometer allows wide-swath cloud and aerosol imaging. The total weight and power of the system are estimated at 3 tons and 2,700 W respectively. This novel concept presents significant challenges, including the performance of the lasers in space, the tracking between the main spacecraft and the retroreflectors, the refractive effects of turbulence, and the design of the telescopes to achieve a high signal-to-noise ratio for the high precision measurements. The mission concept was conceived at the Alpbach Summer School 2010
    • …
    corecore