2,095 research outputs found

    Optimal Placement of Actors in WSANs Based on Imposed Delay Constraints

    Get PDF

    Multi-objective hierarchical algorithms for restoring Wireless Sensor Network connectivity in known environments

    Get PDF
    A Wireless Sensor Network can become partitioned due to node failure, requiring the deployment of additional relay nodes in order to restore network connectivity. This introduces an optimisation problem involving a tradeoff between the number of additional nodes that are required and the costs of moving through the sensor field for the purpose of node placement. This tradeoff is application-dependent, influenced for example by the relative urgency of network restoration. We propose a family of algorithms based on hierarchical objectives including complete algorithms and heuristics which integrate network design with path planning, recognising the impact of obstacles on mobility and communication. We conduct an empirical evaluation of the algorithms on random connectivity and mobility graphs, showing their relative performance in terms of node and path costs, and assessing their execution speeds. Finally, we examine how the relative importance of the two objectives influences the choice of algorithm. In summary, the algorithms which prioritise the node cost tend to find graphs with fewer nodes, while the algorithm which prioritise the cost of moving find slightly larger solutions but with cheaper mobility costs. The heuristic algorithms are close to the optimal algorithms in node cost, and higher in mobility costs. For fast moving agents, the node algorithms are preferred for total restoration time, and for slow agents, the path algorithms are preferred

    Sensor coverage and actors relocation in wireless sensor and actor networks (WSAN) : optimization models and approximation algorithms

    Get PDF
    "December 2010.""A Thesis presented to the Faculty of the Graduate School at the University of Missouri In Partial Fulfillment of the Requirements for the Degree Master of Science."Thesis supervisor: Dr. Esra Sisikoglu.Wireless Sensors and Actor Networks (WSAN) have a wide variety of applications such as military surveillance, object tracking and habitat monitoring. Sensors are data gathering devices. Selecting the minimum number of sensors for network coverage is crucial to reduce the cost of installation and data processing time. Actors in a WSAN are decision-making units. They need to be communicating with their fellow actors in order to respond to events. Therefore, the need to maintain a connected inter-actor network at all times is critical. In the Actor Relocation Problem (Chapter 2) of this thesis we considered the problem of finding optimal strategies to restore connectivity when inter-actor network fails. We used a mixed integer programming formulation to find the optimal relocation strategies for actors in which the total travel distance is minimized. In our formulation we used powers of the adjacency matrix to generate constraints that ensure connectivity. In the Sensor Coverage Problem (Chapter 3) we developed a mixed integer programming model to find the minimum number of sensors and their locations to cover a given area. We also developed a bi-level algorithm that runs two separate optimization algorithms iteratively to find the location of sensors such that every point in a continuous area is covered.Includes bibliographical references (pages 61-63)

    Towards adaptive actors for scalable iot applications at the edge

    Get PDF
    Traditional device-cloud architectures are not scalable to the size of future IoT deployments. While edge and fog-computing principles seem like a tangible solution, they increase the programming effort of IoT systems, do not provide the same elasticity guarantees as the cloud and are of much greater hardware heterogeneity. Future IoT applications will be highly distributed and place their computational tasks on any combination of end-devices (sensor nodes, smartphones, drones), edge and cloud resources in order to achieve their application goals. These complex distributed systems require a programming model that allows developers to implement their applications in a simple way (i.e., focus on the application logic) and an execution framework that runs these applications resiliently with a high resource efficiency, while maximizing application utility. Towards such distributed execution runtime, we propose Nandu, an actor based system that adapts and migrates tasks dynamically using developer provided hints as seed information. Nandu allows developers to focus on sequential application logic and transforms their application into distributed, adaptive actors. The resulting actors support fine-grained entry points for the execution environment. These entry points allow local schedulers to adapt actors seamlessly to the current context, while optimizing the overall application utility according to developer provided requirements

    Privacy-Aware and Secure Decentralized Air Quality Monitoring

    Get PDF
    Indoor Air Quality monitoring is a major asset to improving quality of life and building management. Today, the evolution of embedded technologies allows the implementation of such monitoring on the edge of the network. However, several concerns need to be addressed related to data security and privacy, routing and sink placement optimization, protection from external monitoring, and distributed data mining. In this paper, we describe an integrated framework that features distributed storage, blockchain-based Role-based Access Control, onion routing, routing and sink placement optimization, and distributed data mining to answer these concerns. We describe the organization of our contribution and show its relevance with simulations and experiments over a set of use cases

    Smart Environments and Cross Layer Design

    Get PDF

    Computer communications

    Full text link

    Modeling, Analysis and Simulation of Ubiquitous Systems Using a MDE Approach

    No full text
    International audienceThe growth of industrial activities during the last decades and the diversity of industrial products require standards and common methodologies for building and integrating systems. It is also required that working groups use the same terminologies and concepts needed for each domain. The Model Driven Engineering approach aims to give an answer, while using a high level method based on models and transformations. In this paper, we use this approach to model ubiquitous systems. Those systems are composed of devices interconnected through various kinds of network, in order to get and provide information. We present a model for this class of systems and, its use, in terms of analysis and simulation, in the field of energy while studying real cases from our industrial partner, Terra Nova Energy

    Efficient Location Training Protocols for Localization in Heterogeneous Sensor and Actor Networks

    No full text
    International audienceAbstract--In this work we consider a large-scale geographic area populated by tiny sensors and some more powerful devices called actors, authorized to organize the sensors in their vicinity into short-lived, actor-centric sensor networks. The tiny sensors run on miniature non-rechargeable batteries, are anonymous and are unaware of their location. The sensors differ in their ability to dynamically alter their sleep times. Indeed, the periodic sensors have sleep periods of predefined lengths, established at fabrication time; by contrast, the free sensors can dynamically alter their sleep periods, under program control. The main contribution of this work is to propose an energy-efficient location training protocol for heterogeneous actor-centric sensor networks where the sensors acquire coarse-grain location awareness with respect to the actor in their vicinity. Our analytical analysis, confirmed by experimental evaluation, show that the proposed protocol outperforms the best previously-known location training protocols in terms of the number of sleep/awake transitions, overall sensor awake time, and energy consumption

    LOCALIZED MOVEMENT CONTROL CONNECTIVITY RESTORATION ALGORITHMS FOR WIRELESS SENSOR AND ACTOR NETWORKS

    Get PDF
    Wireless Sensor and Actor Networks (WSANs) are gaining an increased interest because of their suitability for mission-critical applications that require autonomous and intelligent interaction with the environment. Hazardous application environments such as forest fire monitoring, disaster management, search and rescue, homeland security, battlefield reconnaissance, etc. make actors susceptible to physical damage. Failure of a critical (i.e. cut-vertex) actor partitions the inter-actor network into disjointed segments while leaving a coverage hole. Maintaining inter-actor connectivity is extremely important in mission-critical applications of WSANs where actors have to quickly plan an optimal coordinated response to detected events. Some proactive approaches pursued in the literature deploy redundant nodes to provide fault tolerance; however, this necessitates a large actor count that leads to higher cost and becomes impractical. On the other hand, the harsh environment strictly prohibits an external intervention to replace a failed node. Meanwhile, reactive approaches might not be suitable for time-sensitive applications. The autonomous and unattended nature of WSANs necessitates a self-healing and agile recovery process that involves existing actors to mend the severed inter-actor connectivity by reconfiguring the topology. Moreover, though the possibility of simultaneous multiple actor failure is rare, it may be precipitated by a hostile environment and disastrous events. With only localized information, recovery from such failures is extremely challenging. Furthermore, some applications may impose application-level constraints while recovering from a node failure. In this dissertation, we address the challenging connectivity restoration problem while maintaining minimal network state information. We have exploited the controlled movement of existing (internal) actors to restore the lost connectivity while minimizing the impact on coverage. We have pursued distributed greedy heuristics. This dissertation presents four novel approaches for recovering from node failure. In the first approach, volunteer actors exploit their partially utilized transmission power and reposition themselves in such a way that the connectivity is restored. The second approach identifies critical actors in advance, designates them preferably as noncritical backup nodes that replace the failed primary if such contingency arises in the future. In the third approach, we design a distributed algorithm that recovers from a special case of multiple simultaneous failures. The fourth approach factors in application-level constraints on the mobility of actors while recovering from node failure and strives to minimize the impact of critical node failure on coverage and connectivity. The performance of proposed approaches is analyzed and validated through extensive simulations. Simulation results confirm the effectiveness of proposed approaches that outperform the best contemporary schemes found in literature
    corecore